74 research outputs found

    The April 3, 2010 earthquake along the Pernicana fault (Mt. Etna - Italy): analysis of satellite and in situ ground deformation data integrated by the SISTEM approach

    Get PDF
    Etna is worldwide known as one of the most studied and monitored active volcanoes. Flank instability along the eastern and southern portion of Mt. Etna has been observed and measured thanks to geodetic networks and InSAR data analysis. The spreading area is bordered to the north by the east-west Pernicana Fault System (PFS) which dynamic is often linked with the eruptive activity, as recently observed during the 2002-2003 eruption. A seismic sequence occurred since April 2-3, 2010, along the PFS with two very shallow (a few hundred meters) mainshocks of magnitude 3.6 and 3.5. Explosions and ash emissions at the summit craters followed this swarm and culminated some days later (April 7-8). Just after the earthquake, specific GPS surveys were carried out aimed at monitoring the eastern part of the Pernicana fault, and the leveling route on the northeastern flank of the volcano was also surveyed. Trying to investigate the deformation occurred along the PFS during the events of April 3rd 2010, we performed a DInSAR (Differential Interferometric Synthetic Aperture Radar) analysis of ascending and descending Envisat, and of ascending ALOS-PALSAR images encompassing the date of the earthquake. The Envisat interferograms show very intense but local deformation on the Envisat ascending data and a low signal for the descending geometry, close to the Pernicana fault trace. This is probably due to the oblique normal/leftlateral kinematics of the PFS (as deduced also by GPS and leveling data), indeed both vertical (lowering) and horizontal (eastwards) components of motion produce a strong stretching of the LOS (Line Of Sight) distance for ascending geometry, while the two components act in opposite ways for the descending geometry, resulting in lower LOS distance variations compared to the ascending data set. We analyzed also the ALOS pair referring to 21/02/2010 – 08/04/2010 time and acquired along the ascending track number 638. The ALOS interferogram clearly show three fringes corresponding to roughly 35 cm of LOS displacement. The preliminary modeling of the interferograms agree with the seismic information (very shallow faulting, seismic moment) and show that the medium behave elastically. In order to investigate the ground deformation pattern associated with this event, an application of the novel SISTEM (Simultaneous and Integrated Strain Tensor Estimation from geodetic and satellite deformation Measurements) approach is presented here. To achieve higher accuracy and get better constraint of the 3D components of the displacements, we improved the standard formulation of SISTEM approach, based on the GPS and a single DInSAR sensor, in order to take into account all the available dataset (GPS, leveling, ascending and descending ENVISAT C-Band interferograms and the ALOS L-Band data). The 3D displacement maps obtained using the SISTEM approach well show the kinematics of the PFS, and are able to reconstruct also the ground deformation affecting the whole investigated area, defining the movements of the north-eastern flank of the volcano. These results, which provide an accurate spatial characterization of ground deformation, are hence promising for future studies aimed at improving the knowledge about the kinematics of the active faults of Mt. Etna

    SAFER Response to Eyjafjallajökull and Merapi Volcanic Eruptions. In: ‘Let's embrace space’ Space Research achievements under the 7th Framework Programme, Edit by European Commission, DG Enterprise and Industry

    Get PDF
    After PREVIEW FP6 Project’s conclusion, the WP30210 within FP7 GMES SAFER (Services and Applications For Emergency Response) Project has the main objective to refine and consolidate the Earthquake & Volcanoes (E&V) services that were just tested in previous activities and to provide operative services to Users, the Civil Protection Authorities. Here we mainly report objectives and results for the specific tasks related to Eruptive volcanic parameters (WP30211). Four specific products related to the volcanic events which will contribute to the monitoring of the phenomena and mitigation of the eruption effects are expected within the end of the Project. They mainly concern: SAR displacement, high temperature events (HTE), Ash detection, SO2 concentration and flux, and Ash dispersion models. In particular, here we mostly focus on the activity performed in the occasion of FP7 GMES SAFER activation during two major volcanic eruptions occurred in 2010. The first activation was for the Eyjafjallajökull eruption occurred in Iceland between April and May 2010, and the second one was solicited in the occasion of the eruption of Mount Merapi (Indonesia) in October-November 2010. Here we present the results of both remote sensing and modeling activities performed during these two events.Published212-222ope

    Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake

    Get PDF
    Large earthquakes are thought to release strain on previously locked faults. However, the details of how earthquakes are initiated, grow and terminate in relation to pre-seismically locked and creeping patches is unclear ^1-4. The 2015 Mw 7.8 Gorkha, Nepal earthquake occurred close to Kathmandu in a region where the prior pattern of fault locking is well documented ^5. Here we analyze this event using seismological records measured at teleseismic distances and Synthetic Aperture Radar imagery. We show that the earthquake originated northwest of Kathmandu within a cluster of background seismicity that fringes the bottom of the locked portion of the Main Himalayan Thrust fault (MHT). The rupture propagated eastwards for about 140 km, unzipping the lower edge of the locked portion of the fault. High-frequency seismic waves radiated continuously as the slip pulse propagated at about 2.8 km s-1 along this zone of presumably high and heterogeneous pre-¬seismic stress at the seismic-aseismic transition. Eastward unzipping of the fault resumed during the Mw 7.3 aftershock on May 12. The transfer of stress to neighbouring regions during the Gorkha earthquake should facilitate future rupture of the areas of the MHT adjacent and up-dip of the Gorkha earthquake rupture.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ngeo251

    A Macroecological Analysis of SERA Derived Forest Heights and Implications for Forest Volume Remote Sensing

    Get PDF
    Individual trees have been shown to exhibit strong relationships between DBH, height and volume. Often such studies are cited as justification for forest volume or standing biomass estimation through remote sensing. With resolution of common satellite remote sensing systems generally too low to resolve individuals, and a need for larger coverage, these systems rely on descriptive heights, which account for tree collections in forests. For remote sensing and allometric applications, this height is not entirely understood in terms of its location. Here, a forest growth model (SERA) analyzes forest canopy height relationships with forest wood volume. Maximum height, mean, H100, and Lorey's height are examined for variability under plant number density, resource and species. Our findings, shown to be allometrically consistent with empirical measurements for forested communities world-wide, are analyzed for implications to forest remote sensing techniques such as LiDAR and RADAR. Traditional forestry measures of maximum height, and to a lesser extent H100 and Lorey's, exhibit little consistent correlation with forest volume across modeled conditions. The implication is that using forest height to infer volume or biomass from remote sensing requires species and community behavioral information to infer accurate estimates using height alone. SERA predicts mean height to provide the most consistent relationship with volume of the height classifications studied and overall across forest variations. This prediction agrees with empirical data collected from conifer and angiosperm forests with plant densities ranging between 102–106 plants/hectare and heights 6–49 m. Height classifications investigated are potentially linked to radar scattering centers with implications for allometry. These findings may be used to advance forest biomass estimation accuracy through remote sensing. Furthermore, Lorey's height with its specific relationship to remote sensing physics is recommended as a more universal indicator of volume when using remote sensing than achieved using either maximum height or H100

    Meniscal tear—a feature of osteoarthritis

    Full text link

    Long term and seasonal ground deformation monitoring of Larissa Plain (Central Greece) by persistent scattering interferometry

    No full text
    The land subsidence which occurs at the Larissa Basin (Thessaly Plain, Central Greece) is due to various causes including aquifer system compaction. Deformation maps of high spatial resolution deduced by the Persistent Scattering Interferometry (PSI) technique (using radar scenes from ERS and ENVISAT satellites) for the period 1992-2006 were produced to study the spatial and temporal ground deformation. A developed GIS database (including geological, tectonic, morphological, hydrological, meteorological and watertable variation from wells in the area) offered the possibility of studying in detail the intense subsidence. The PSI based average deformation image clearly shows that subsidence generally takes place inside the Larissa Plain ranging from 5-250 mm. The largest amplitude rates (-25 mm/yr) are observed around the urban area of Larissa City (especially at Gianouli and Nikea villages), while the Larissa City center appears to be relatively stable with a tendency to subside. The rest of the plain regions seem to subside at moderate rates (about 5-10 mm/yr). The surrounding mountainous area is stable, or has slightly been uplifted with respect to the NE located reference point. It was found that there is a correlation between the seasonal water-table variation (deduced from wells data), the seasonal water demand for irrigation associated with specific types of cultivation (cotton fields), the monthly rainfall, and the observed subsidence rate in the rural regions of the Thessaly Plain. © 2013 Versita Warsaw and Springer-Verlag Wien
    corecore