10 research outputs found
Elevated virulence of an emerging viral genotype as a driver of honeybee loss.
PublishedJournal ArticleEmerging infectious diseases (EIDs) have contributed significantly to the current biodiversity crisis, leading to widespread epidemics and population loss. Owing to genetic variation in pathogen virulence, a complete understanding of species decline requires the accurate identification and characterization of EIDs. We explore this issue in the Western honeybee, where increasing mortality of populations in the Northern Hemisphere has caused major concern. Specifically, we investigate the importance of genetic identity of the main suspect in mortality, deformed wing virus (DWV), in driving honeybee loss. Using laboratory experiments and a systematic field survey, we demonstrate that an emerging DWV genotype (DWV-B) is more virulent than the established DWV genotype (DWV-A) and is widespread in the landscape. Furthermore, we show in a simple model that colonies infected with DWV-B collapse sooner than colonies infected with DWV-A. We also identify potential for rapid DWV evolution by revealing extensive genome-wide recombination in vivo The emergence of DWV-B in naive honeybee populations, including via recombination with DWV-A, could be of significant ecological and economic importance. Our findings emphasize that knowledge of pathogen genetic identity and diversity is critical to understanding drivers of species decline.This work was supported by the Federal Ministry of Food,
Agriculture and Consumer Protection (Germany): Fit Bee project
(grant 511-06.01-28-1-71.007-10), the EU: BeeDoc (grant 244956),
iDiv (2013 NGS-Fast Track grant W47004118) and the Insect Pollinators
Initiative (IPI grant BB/I000100/1 and BB/I000151/1). The IPI is
funded jointly by the Biotechnology and Biological Sciences Research
Council, the Department for Environment, Food and Rural Affairs,
the Natural Environment Research Council, the Scottish Government
and the Wellcome Trust, under the Living with Environmental
Change Partnership
Enhancing European capabilities for application of multi-omics studies in biology and biomedicine space research
Following on from the NASA twinsâ study, there has been a tremendous interest in the use of omics techniques in spaceflight. Individual space agencies, NASA's GeneLab, JAXA's ibSLS, and the ESA-funded Space Omics Topical Team and the International Standards for Space Omics Processing (ISSOP) groups have established several initiatives to support this growth. Here, we present recommendations from the Space Omics Topical Team to promote standard application of space omics in Europe. We focus on four main themes: i) continued participation in and coordination with international omics endeavors, ii) strengthening of the European space omics infrastructure including workforce and facilities, iii) capitalizing on the emerging opportunities in the commercial space sector, and iv) capitalizing on the emerging opportunities in human subjects research
Space omics research in Europe: contributions, geographical distribution and ESA member state funding schemes
18 p.-3 fig.-1 graph. abst.The European research community, via European Space Agency (ESA) spaceflight opportunities, has significantly contributed towards our current understanding of spaceflight biology. Recent molecular biology experiments include âomicâ analysis, which provides a holistic and systems level understanding of the mechanisms underlying phenotypic adaptation. Despite vast interest in, and the immense quantity of biological information gained from space omics research, the knowledge of ESA-related space omics works as a collective remains poorly defined due to the recent exponential application of omics approaches in space and the limited search capabilities of pre-existing records. Thus, a review of such contributions is necessary to clarify and promote the development of space omics among ESA and ESA state members. To address this gap, in this review we: i) identified and summarised omics works led by European researchers, ii) geographically described these omics works, and iii) highlighted potential caveats in complex funding scenarios among ESA member states.All listed authors are members of the ESA Space Omics Topical Team, funded by the ESA grant/contract 4000131202/20/NL/PG/pt âSpace Omics: Towards an integrated ESA/NASA âomics database for spaceflight and ground facilities experimentsâ awarded to RH, which was the main funding source for this work. Individual authors also acknowledge support from: the Medical Research Council part of a Skills Development Fellowship [grant number MR/T026014/1] awarded to CSD; the Spanish CAM TALENTO program project 2020-5A_BIO-19724 to MAFR; the Spanish Plan Estatal de InvestigaciĂłn CientĂfica y Desarrollo TecnolĂłgico
Grant RTI2018-099309-B-I00 to FJM, the Swedish Research Council VR grant 2020-04864 to SG and the French Centre National d'Etudes Spatiales grant DAR 2020-4800001004, 2021-4800001117 to ECD. This research was also funded in part by the Wellcome Trust [110182/Z/15/Z] to KS.Peer reviewe
Enhancing European capabilities for application of multi-omics studies in biology and biomedicine space research
Following on from the NASA twinsâ study, there has been a tremendous interest in the use of omics techniques in spaceflight. Individual space agencies, NASAâs GeneLab, JAXA's ibSLS, and the ESA-funded Space Omics Topical Team and the International Standards for Space Omics Processing (ISSOP) groups have established several initiatives to support this growth. Here, we present recommendations from the Space Omics Topical Team to promote standard application of space omics in Europe. We focus on four main themes: i) continued participation in and coordination with international omics endeavors, ii) strengthening of the European space omics infrastructure including workforce and facilities, iii) capitalizing on the emerging opportunities in the commercial space sector, and iv) capitalizing on the emerging opportunities in human subjects research
Space omics research in Europe: Contributions, geographical distribution and ESA member state funding schemes
The European research community, via European Space Agency (ESA) spaceflight opportunities, has significantly contributed toward our current understanding of spaceflight biology. Recent molecular biology experiments include âomicâ analysis, which provides a holistic and systems level understanding of the mechanisms underlying phenotypic adaptation. Despite vast interest in, and the immense quantity of biological information gained from space omics research, the knowledge of ESA-related space omics works as a collective remains poorly defined due to the recent exponential application of omics approaches in space and the limited search capabilities of pre-existing records. Thus, a review of such contributions is necessary to clarify and promote the development of space omics among ESA and ESA state members. To address this gap, in this review, we i) identified and summarized omics works led by European researchers, ii) geographically described these omics works, and iii) highlighted potential caveats in complex funding scenarios among ESA member states
NASA GeneLab RNA-seq consensus pipeline: Standardized processing of short-read RNA-seq data
With the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from spaceflight-associated experiments. The pipeline includes quality control, read trimming, mapping, and gene quantification steps, culminating in the detection of differentially expressed genes. This data analysis pipeline and the results of its execution using data submitted to GeneLab are now all publicly available through the GeneLab database. We present here the full details and rationale for the construction of this pipeline in order to promote transparency, reproducibility, and reusability of pipeline data; to provide a template for data processing of future spaceflight-relevant datasets; and to encourage cross-analysis of data from other databases with the data available in GeneLab
Revamping Space-omics in Europe.
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordEuropean Space Agency (ESA
Enhancing European capabilities for application of multi-omics studies in biology and biomedicine space research
Summary: Following on from the NASA twinsâ study, there has been a tremendous interest in the use of omics techniques in spaceflight. Individual space agencies, NASAâs GeneLab, JAXA's ibSLS, and the ESA-funded Space Omics Topical Team and the International Standards for Space Omics Processing (ISSOP) groups have established several initiatives to support this growth. Here, we present recommendations from the Space Omics Topical Team to promote standard application of space omics in Europe. We focus on four main themes: i) continued participation in and coordination with international omics endeavors, ii) strengthening of the European space omics infrastructure including workforce and facilities, iii) capitalizing on the emerging opportunities in the commercial space sector, and iv) capitalizing on the emerging opportunities in human subjects research
NASA GeneLab RNA-seq consensus pipeline: Standardized processing of short-read RNA-seq data
22 p.-6 fig.-3 tab.-1 fig. supl.-6 tab. supl.-1 graph. abst.With the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from spaceflight-associated experiments. The pipeline includes quality control, read trimming, mapping, and gene quantification steps, culminating in the detection of differentially expressed genes. This data analysis pipeline and the results of its execution using data submitted to GeneLab are now all publicly available through the GeneLab database. We present here the full details and rationale for the construction of this pipeline in order to promote transparency, reproducibility, and reusability of pipeline data; to provide a template for data processing of future spaceflight-relevant datasets; and to encourage cross-analysis of data from other databases with the data available in GeneLab.This work was funded in part by the NASA Space Biology program within the NASA Science Mission Directorate's (SMD) Biological and Physical Sciences (BPS) Division, NASA award numbers NNX15AG56G, 80NSSC19K0132, the Biotechnology and Biological Sciences Research Council (grant number BB/N015894/1), the MRC Versus Arthritis Centre for Musculoskeletal Ageing Research (grant numbers MR/P021220/1 and MR/R502364/1), the Spanish Research Agency (AEI grant number RTI2018-099309-B-I00, co-funded by EU-ERDF), and the National Institute for Health Research Nottingham Biomedical Research Centre.Peer reviewe