536 research outputs found
Report on the regional conference for small business development organisations
A report on the small business development organisations regional conference for the BLS countries held at Lesotho Hilton International Maseru on 26th - 28th July 1982
Change Is in the Air: The Hypoxic Induction of Phenotype Switching in Melanoma
Melanoma cells can switch from a highly proliferative, less invasive state to a highly invasive, less proliferative state, a phenomenon termed phenotype switching. This results in a highly heterogenous tumor, where a slow-growing, aggressive population of cells may resist tumor therapy, and it predicts tumor recurrence. Here we discuss the observation made by Widmer et al. that hypoxia may drive phenotype switching
Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer.
Tumors adapt to an unfavorable microenvironment by controlling the balance between cell proliferation and cell motility, but the regulators of this process are largely unknown. Here, we show that an alternatively spliced isoform of syntaphilin (SNPH), a cytoskeletal regulator of mitochondrial movements in neurons, is directed to mitochondria of tumor cells. Mitochondrial SNPH buffers oxidative stress and maintains complex II-dependent bioenergetics, sustaining local tumor growth while restricting mitochondrial redistribution to the cortical cytoskeleton and tumor cell motility. Conversely, introduction of stress stimuli to the microenvironment, including hypoxia, acutely lowered SNPH levels, resulting in bioenergetics defects and increased superoxide production. In turn, this suppressed tumor cell proliferation but increased tumor cell invasion via greater mitochondrial trafficking to the cortical cytoskeleton. Loss of SNPH or expression of an SNPH mutant lacking the mitochondrial localization sequence resulted in increased metastatic dissemination in xenograft or syngeneic tumor models in vivo. Accordingly, tumor cells that acquired the ability to metastasize in vivo constitutively downregulated SNPH and exhibited higher oxidative stress, reduced cell proliferation, and increased cell motility. Therefore, SNPH is a stress-regulated mitochondrial switch of the cell proliferation-motility balance in cancer, and its pathway may represent a therapeutic target
Direct and indirect effects of retinoic acid on human Th2 cytokine and chemokine expression by human T lymphocytes
BACKGROUND: Vitamin A (VA) deficiency induces a type 1 cytokine response and exogenously provided retinoids can induce a type 2 cytokine response both in vitro and in vivo. The precise mechanism(s) involved in this phenotypic switch are inconsistent and have been poorly characterized in humans. In an effort to determine if retinoids are capable of inducing Th2 cytokine responses in human T cell cultures, we stimulated human PBMCs with immobilized anti-CD3 mAb in the presence or absence of all-trans retinoic acid (ATRA) or 9-cis-RA. RESULTS: Stimulation of human PBMCs and purified T cells with ATRA and 9-cis-RA increased mRNA and protein levels of IL-4, IL-5, and IL-13 and decreased levels of IFN-γ, IL-2, IL-12p70 and TNF-α upon activation with anti-CD3 and/or anti-CD28 mAbs. These effects were dose-dependent and evident as early as 12 hr post stimulation. Real time RT-PCR analysis revealed a dampened expression of the Th1-associated gene, T-bet, and a time-dependent increase in the mRNA for the Th2-associated genes, GATA-3, c-MAF and STAT6, upon treatment with ATRA. Besides Th1 and Th2 cytokines, a number of additional proinflammatory and regulatory cytokines including several chemokines were also differentially regulated by ATRA treatment. CONCLUSION: These data provide strong evidence for multiple inductive roles for retinoids in the development of human type-2 cytokine responses
Cancer-Associated Fibroblasts Neutralize the Anti-tumor Effect of CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration of Tumors.
Tumor-associated macrophages (TAM) contribute to all aspects of tumor progression. Use of CSF1R inhibitors to target TAM is therapeutically appealing, but has had very limited anti-tumor effects. Here, we have identified the mechanism that limited the effect of CSF1R targeted therapy. We demonstrated that carcinoma-associated fibroblasts (CAF) are major sources of chemokines that recruit granulocytes to tumors. CSF1 produced by tumor cells caused HDAC2-mediated downregulation of granulocyte-specific chemokine expression in CAF, which limited migration of these cells to tumors. Treatment with CSF1R inhibitors disrupted this crosstalk and triggered a profound increase in granulocyte recruitment to tumors. Combining CSF1R inhibitor with a CXCR2 antagonist blocked granulocyte infiltration of tumors and showed strong anti-tumor effects
Is there more to Wnt signalling in breast cancer than stabilisation of β-catenin?
Increased Wnt signalling has been implicated in the aetiology of many different human cancers, including breast cancers. In most cases, Wnt signalling is thought to drive tumourigenesis through the stabilisation of cytosolic β-catenin and the subsequent changes in the expression of T-cell factor (TCF)-dependent genes. However, this is not necessarily the only mechanism, as Wnt proteins can signal through a number of different intracellular signalling pathways. The ongoing work from Nancy Hynes' laboratory continues to highlight this latter possibility
- …