92 research outputs found

    Strategies of the invasive tropical fire ant (Solenopsis geminata) to minimize inbreeding costs

    Get PDF
    How invasive species overcome challenges associated with low genetic diversity is unclear. Invasive ant populations with low genetic diversity sometimes produce sterile diploid males, which do not contribute to colony labour or reproductive output. We investigated how inbreeding affects colony founding and potential strategies to overcome its effects in the invasive tropical fire ant, Solenopsis geminata. Our genetic analyses of field samples revealed that 13–100% of males per colony (n = 8 males per 10 colonies) were diploid, and that all newly mated queens (n = 40) were single-mated. Our laboratory experiment in which we assigned newly mated queens to nests consisting of 1, 2, 3, or 5 queens (n = 95 ± 9 replicates) revealed that pleometrosis (queens founding their nest together) and diploid male larvae execution can compensate for diploid male load. The proportion of diploid male producing (DMP) colonies was 22.4%, and DMP colonies produced fewer pupae and adult workers than non-DMP colonies. Pleometrosis significantly increased colony size. Queens executed their diploid male larvae in 43.5% of the DMP colonies, and we hypothesize that cannibalism benefits incipient colonies because queens can redirect nutrients to worker brood. Pleometrosis and cannibalism of diploid male larvae represent strategies through which invasive ants can successfully establish despite high inbreeding

    Multiple incursion pathways for Helicoverpa armigera in Brazil show its genetic diversity spreading in a connected world

    Get PDF
    The Old World cotton bollworm Helicoverpa armigera was first detected in Brazil with subsequent reports from Paraguay, Argentina, Bolivia, and Uruguay. This pattern suggests that the H. armigera spread across the South American continent following incursions into northern/central Brazil, however, this hypothesis has not been tested. Here we compare northern and central Brazilian H. armigera mtDNA COI haplotypes with those from southern Brazil, Uruguay, Argentina, and Paraguay. We infer spatial genetic and gene flow patterns of this dispersive pest in the agricultural landscape of South America. We show that the spatial distribution of H. armigera mtDNA haplotypes and its inferred gene flow patterns in the southwestern region of South America exhibited signatures inconsistent with a single incursion hypothesis. Simulations on spatial distribution patterns show that the detection of rare and/or the absence of dominant mtDNA haplotypes in southern H. armigera populations are inconsistent with genetic signatures observed in northern and central Brazil. Incursions of H. armigera into the New World are therefore likely to have involved independent events in northern/central Brazil, and southern Brazil/Uruguay-Argentina-Paraguay. This study demonstrates the significant biosecurity challenges facing the South American continent, and highlights alternate pathways for introductions of alien species into the New World

    Generation of microsatellite repeat families by RTE retrotransposons in lepidopteran genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Developing lepidopteran microsatellite DNA markers can be problematical, as markers often exhibit multiple banding patterns and high frequencies of non-amplifying "null" alleles. Previous studies identified sequences flanking simple sequence repeat (SSR) units that are shared among many lepidopteran species and can be grouped into microsatellite-associated DNA families. These families are thought to be associated with unequal crossing-over during DNA recombination or with transposable elements (TEs).</p> <p>Results</p> <p>We identified full-length lepidopteran non-LTR retrotransposable elements of the RTE clade in <it>Heliconius melpomene </it>and <it>Bombyx mori</it>. These retroelements possess a single open reading frame encoding the Exonuclease/Endonuclease/Phosphatase and the Reverse Transcriptase/nLTR domains, a 5' UTR (untranslated region), and an extremely short 3' UTR that regularly consists of SSR units. Phylogenetic analysis supported previous suggestions of horizontal transfer among unrelated groups of organisms, but the diversity of lepidopteran RTE elements appears due to ancient divergence of ancestral elements rather than introgression by horizontal transfer. Similarity searches of lepidopteran genomic sequences in GenBank identified partial RTE elements, usually consisting of the 3' terminal region, in 29 species. Furthermore, we identified the C-terminal end of the Reverse Transcriptase/nLTR domain and the associated 3' UTR in over 190 microsatellite markers from 22 lepidopteran species, accounting for 10% of the lepidopteran microsatellites in GenBank. Occasional retrotransposition of autonomous elements, frequent retrotransposition of 3' partial elements, and DNA replication slippage during retrotransposition offers a mechanistic explanation for the association of SSRs with RTE elements in lepidopteran genomes.</p> <p>Conclusions</p> <p>Non-LTR retrotransposable elements of the RTE clade therefore join a diverse group of TEs as progenitors of SSR units in various organisms. When microsatellites are isolated using standard SSR enrichment protocols and primers designed at complementary repeated regions, amplification from multiple genomic sites can cause scoring difficulties that compromise their utility as markers. Screening against RTE elements in the isolation procedure provides one strategy for minimizing this problem.</p

    Population structure and gene flow in the global pest, Helicoverpa armigera

    Get PDF
    Helicoverpa armigerais a major agricultural pest that is distributed across Europe, Asia, Africa and Australasia. This species is hypothesized to have spread to the Americas 1.5million years ago, founding a population that is at present, a distinct species,Helicoverpa zea. In 2013,H.armigerawas confirmed to have re-entered South America via Brazil and subsequently spread. The source of the recent incursion is unknown and population structure inH.armigerais poorly resolved, but a basic understanding would highlight potential biosecurity failures and determine the recent evolutionary history of region-specific lineages. Here, we integrate several end points derived from high-throughput sequencing to assess gene flow inH.armigeraandH.zeafrom populations across six continents. We first assemble mitochondrial genomes to demonstrate the phylogenetic relationship ofH.armigerawith other Heliothine species and the lack of distinction between populations. We subsequently usede novogenotyping-by-sequencing and whole-genome sequences aligned to bacterial artificial chromosomes, to assess levels of admixture. Primarily, we find that BrazilianH.armigeraare derived from diverse source populations, with strong signals of gene flow from European populations, as well as prevalent signals of Asian and African ancestry. We also demonstrate a potential field-caught hybrid betweenH.armigeraandH.zea,and are able to provide genomic support for the presence of theH.armigera confertasubspecies in Australasia. While structure among the bulk of populations remains unresolved, we present distinctions that are pertinent to future investigations as well as to the biosecurity threat posed byH.armigera

    A brave new world for an old world pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil

    Get PDF
    The highly polyphagous Old World cotton bollworm Helicoverpa armigera is a quarantine agricultural pest for the American continents. Historically H. armigera is thought to have colonised the American continents around 1.5 to 2 million years ago, leading to the current H. zea populations on the American continents. The relatively recent species divergence history is evident in mating compatibility between H. zea and H. armigera under laboratory conditions. Despite periodic interceptions of H. armigera into North America, this pest species is not believed to have successfully established significant populations on either continent. In this study, we provide molecular evidence via mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) and cytochrome b (Cyt b) partial gene sequences for the successful recent incursion of H. armigera into the New World, with individuals being detected at two sites (Primavera do Leste, Pedra Preta) within the State of Mato Grosso in Brazil. The mtDNA COI and Cyt b haplotypes detected in the Brazilian H. armigera individuals are common throughout the Old World, thus precluding identification of the founder populations. Combining the two partial mtDNA gene sequences showed that at least two matrilines are present in Brazil, while the inclusion of three nuclear DNA Exon-Primed Intron-Crossing (EPIC) markers identified a further two possible matrilines in our samples. The economic, biosecurity, resistance management, ecological and evolutionary implications of this incursion are discussed in relation to the current agricultural practices in the Americas

    Origin, behaviour, and genetics of reproductive workers in an invasive ant

    Get PDF
    Background Worker reproduction has an important influence on the social cohesion and efficiency of social insect colonies, but its role in the success of invasive ants has been neglected. We used observations of 233 captive colonies, laboratory experiments, and genetic analyses to investigate the conditions for worker reproduction in the invasive Anoplolepis gracilipes (yellow crazy ant) and its potential cost on interspecific defence. We determined the prevalence of worker production of males and whether it is triggered by queen absence; whether physogastric workers with enlarged abdomens are more likely to be reproductive, how normal workers and physogastric workers compare in their contributions to foraging and defence; and whether worker-produced males and males that could have been queen- or worker-produced differ in their size and heterozygosity. Results Sixty-six of our 233 captive colonies produced males, and in 25 of these, some males could only have been produced by workers. Colonies with more workers were more likely to produce males, especially for queenless colonies. The average number of days between the first appearance of eggs and adult males in our colonies was 54.1 ± 10.2 (mean ± SD, n = 20). In our laboratory experiment, queen removal triggered an increase in the proportion of physogastric workers. Physogastric workers were more likely to have yolky oocytes (37–54.9%) than normal workers (2–25.6%), which is an indicator of fertile or trophic egg production. Physogastric workers were less aggressive during interspecific aggression tests and foraged less than normal workers. The head width and wing length of worker-produced males were on average 4.0 and 4.3% greater respectively than those of males of undetermined source. Our microsatellite DNA analyses indicate that 5.5% of worker-produced males and 14.3% of males of undetermined source were heterozygous, which suggests the presence of diploid males and/or genetic mosaics in A. gracilipes. Conclusions Our experimental work provides crucial information on worker reproduction in A. gracilipes and its potential cost to colony defence. The ability of A. gracilipes workers to produce males in the absence of queens may also contribute to its success as an invasive species if intranidal mating can take place between virgin queens and worker-produced males
    • …
    corecore