24 research outputs found

    Assessing cell-specific effects of genetic variations using tRNA microarrays

    Get PDF
    Background: By definition, effect of synonymous single-nucleotide variants (SNVs) on protein folding and function are neutral, as they alter the codon and not the encoded amino acid. Recent examples indicate tissue-specific and transfer RNA (tRNA)-dependent effects of some genetic variations arguing against neutrality of synonymous SNVs for protein biogenesis. Results: We performed systematic analysis of tRNA abunandance across in various models used in cystic fibrosis (CF) research and drug development, including Fischer rat thyroid (FRT) cells, patient-derived primary human bronchial epithelia (HBE) from lung biopsies, primary human nasal epithelia (HNE) from nasal curettage, intestinal organoids, and airway progenitor-directed differentiation of human induced pluripotent stem cells (iPSCs). These were compared to an immortalized CF bronchial cell model (CFBE41o-) and two widely used laboratory cell lines, HeLa and HEK293. We discovered that specific synonymous SNVs exhibited differential effects which correlated with variable concentrations of cognate tRNAs. Conclusions: Our results highlight ways in which the presence of synonymous SNVs may alter local kinetics of mRNA translation; and thus, impact protein biogenesis and function. This effect is likely to influence results from mechansistic analysis and/or drug screeining efforts, and establishes importance of cereful model system selection based on genetic variation profile

    Impaired Hepatitis C Virus-Specific T Cell Responses and Recurrent Hepatitis C Virus in HIV Coinfection

    Get PDF
    BACKGROUND: Hepatitis C virus (HCV)-specific T cell responses are critical for spontaneous resolution of HCV viremia. Here we examined the effect of a lymphotropic virus, HIV-1, on the ability of coinfected patients to maintain spontaneous control of HCV infection. METHODS AND FINDINGS: We measured T cell responsiveness by lymphoproliferation and interferon-γ ELISPOT in a large cohort of HCV-infected individuals with and without HIV infection. Among 47 HCV/HIV-1-coinfected individuals, spontaneous control of HCV was associated with more frequent HCV-specific lymphoproliferative (LP) responses (35%) compared to coinfected persons who exhibited chronic HCV viremia (7%, p = 0.016), but less frequent compared to HCV controllers who were not HIV infected (86%, p = 0.003). Preservation of HCV-specific LP responses in coinfected individuals was associated with a higher nadir CD4 count (r (2) = 0.45, p < 0.001) and the presence and magnitude of the HCV-specific CD8(+) T cell interferon-γ response (p = 0.0014). During long-term follow-up, recurrence of HCV viremia occurred in six of 25 coinfected individuals with prior control of HCV, but in 0 of 16 HIV-1-negative HCV controllers (p = 0.03, log rank test). In these six individuals with recurrent HCV viremia, the magnitude of HCV viremia following recurrence inversely correlated with the CD4 count at time of breakthrough (r = −0.94, p = 0.017). CONCLUSIONS: These results indicate that HIV infection impairs the immune response to HCV—including in persons who have cleared HCV infection—and that HIV-1-infected individuals with spontaneous control of HCV remain at significant risk for a second episode of HCV viremia. These findings highlight the need for repeat viral RNA testing of apparent controllers of HCV infection in the setting of HIV-1 coinfection and provide a possible explanation for the higher rate of HCV persistence observed in this population

    Global prevalence and genotype distribution of hepatitis C virus infection in 2015 : A modelling study

    Get PDF
    Publisher Copyright: © 2017 Elsevier LtdBackground The 69th World Health Assembly approved the Global Health Sector Strategy to eliminate hepatitis C virus (HCV) infection by 2030, which can become a reality with the recent launch of direct acting antiviral therapies. Reliable disease burden estimates are required for national strategies. This analysis estimates the global prevalence of viraemic HCV at the end of 2015, an update of—and expansion on—the 2014 analysis, which reported 80 million (95% CI 64–103) viraemic infections in 2013. Methods We developed country-level disease burden models following a systematic review of HCV prevalence (number of studies, n=6754) and genotype (n=11 342) studies published after 2013. A Delphi process was used to gain country expert consensus and validate inputs. Published estimates alone were used for countries where expert panel meetings could not be scheduled. Global prevalence was estimated using regional averages for countries without data. Findings Models were built for 100 countries, 59 of which were approved by country experts, with the remaining 41 estimated using published data alone. The remaining countries had insufficient data to create a model. The global prevalence of viraemic HCV is estimated to be 1·0% (95% uncertainty interval 0·8–1·1) in 2015, corresponding to 71·1 million (62·5–79·4) viraemic infections. Genotypes 1 and 3 were the most common cause of infections (44% and 25%, respectively). Interpretation The global estimate of viraemic infections is lower than previous estimates, largely due to more recent (lower) prevalence estimates in Africa. Additionally, increased mortality due to liver-related causes and an ageing population may have contributed to a reduction in infections. Funding John C Martin Foundation.publishersversionPeer reviewe
    corecore