35 research outputs found

    Sperm dumping as a defense against meiotic drive

    Get PDF
    Sperm from Drosophila simulans that carry a sex-ratio distorter is preferentially lost from females' sperm-storage organs. This suggests that sperm dumping is a major factor affecting sperm competition in this species, and may have evolved in response to sex-ratio distorters

    Nuptial gifts fail to resolve a sexual conflict in an insect

    Get PDF
    Background Because of the potential benefits to individuals of saving investment for future mating opportunities, there is conflict between mates over most aspects of reproduction. Males of many species transfer compounds in the ejaculate that manipulate female reproductive physiology to increase male reproductive success. These seminal compounds are often associated with direct and/or indirect costs to females. In contrast, in some species ejaculates also contain nutrients used by females for somatic maintenance and increased reproductive output. In general, the extent to which male seminal components are detrimental or beneficial to females is poorly understood, and interactions between seminal compounds with different effects have been almost completely neglected. Here we examine the impact of male receptivity-suppressing factors and nutrient donations on female longevity and lifetime reproductive output in the bushcricket Requena verticalis. Results We show that receiving multiple ejaculates reduces longevity in female R. verticalis, indicating a cost of male derived receptivity-suppressing compounds. Consumption of male nutrient donations does not appear to ameliorate this longevity cost, and there was no effect of nutrient provisioning on female lifetime fecundity. Conclusion These results indicate that nutrient provisioning does not provide a resolution to sexual conflict over female receptivity in this bushcricket species

    Polyandry in nature: a global analysis

    Get PDF
    A popular notion in sexual selection is that females are polyandrous and their offspring are commonly sired by more than a single male. We now have large-scale evidence from natural populations to be able to verify this assumption. Although we concur that polyandry is a generally common and ubiquitous phenomenon, we emphasise that it remains variable. In particular, the persistence of single paternity, both within and between populations, requires more careful consideration. We also explore an intriguing relation of polyandry with latitude. Several recent large-scale analyses of the relations between key population fitness variables, such as heterozygosity, effective population size (Ne), and inbreeding coefficients, make it possible to examine the global effects of polyandry on population fitness for the first time

    Opposite environmental and genetic influences on body size in North American Drosophila pseudoobscura

    Get PDF
    BACKGROUND: Populations of a species often differ in key traits. However, it is rarely known whether these differences are associated with genetic variation and evolved differences between populations, or are instead simply a plastic response to environmental differences experienced by the populations. Here we examine the interplay of plasticity and direct genetic control by investigating temperature-size relationships in populations of Drosophila pseudoobscura from North America. We used 27 isolines from three populations and exposed them to four temperature regimes (16°C, 20°C, 23°C, 26°C) to examine environmental, genetic and genotype-by-environment sources of variance in wing size. RESULTS: By far the largest contribution to variation in wing size came from rearing temperature, with the largest flies emerging from the coolest temperatures. However, we also found a genetic signature that was counter to this pattern as flies originating from the northern, cooler population were consistently smaller than conspecifics from more southern, warmer populations when reared under the same laboratory conditions. CONCLUSIONS: We conclude that local selection on body size appears to be acting counter to the environmental effect of temperature. We find no evidence that local adaptation in phenotypic plasticity can explain this result, and suggest indirect selection on traits closely linked with body size, or patterns of chromosome inversion may instead be driving this relationship. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-015-0323-3) contains supplementary material, which is available to authorized users

    The impact of female mating strategies on the success of insect control technologies

    Get PDF
    Attempts to control insect pests and disease vectors have a long history. Recently, new technology has opened a whole new range of possible methods to suppress or transform natural populations. But it has also become clear that a better understanding of the ecology of targeted populations is needed. One key parameter is mating behaviour. Often modified males are released which need to successfully reproduce with females while competing with wild males. Insect control techniques can be affected by target species’ mating ecology, and conversely mating ecology is likely to evolve in response to manipulation attempts. A better understanding of (female) mating behaviour will help anticipate and overcome potential challenges, and thus make desirable outcomes more likely

    Flexible polyandry in female flies is an adaptive response to infertile males

    Get PDF
    Infertility is common in nature despite its obvious cost to individual fitness. Rising global temperatures are predicted to decrease fertility, and male sterility is frequently used in attempts to regulate pest or disease vector populations. When males are infertile, females may mate with multiple males to ensure fertilization, and changes in female mating behavior in turn could intensify selection on male fertility. Fertility assurance is a potentially wide-spread explanation for polyandry, but whether and how it actually contributes to the evolution of polyandry is not clear. Moreover, whether a drop in male fertility would lead to a genetic increase in polyandry depends on whether females respond genetically or through behavioral plasticity to male infertility. Here, we experimentally manipulate male fertility through heat-exposure in Drosophila pseudoobscura, and test female discrimination against infertile males before and after mating. Using isogenic lines, we compare the roles of behaviorally plastic versus genetically fixed polyandry. We find that heat-exposed males are less active and attractive, and that females are more likely to remate after mating with these males. Remating rate increases with reduced reproductive output, indicating that females use current sperm storage threshold to make dynamic remating decisions. After remating with fertile males, females restore normal fecundity levels. Our results suggest that male infertility could explain the evolution of adaptively flexible polyandry, but is less likely to cause an increase in genetic polyandry

    Polyandrous females avoid costs of inbreeding

    Get PDF
    Why do females typically mate with more than one male? Female mating patterns have broad implications for sexual selection, speciation and conflicts of interest between the sexes, and yet they are poorly understood. Matings inevitably have costs, and for females, the benefits of taking more than one mate are rarely obvious. One possible explanation is that females gain benefits because they can avoid using sperm from genetically incompatible males, or invest less in the offspring of such males. It has been shown that mating with more than one male can increase offspring viability, but we present the first clear demonstration that this occurs because females with several mates avoid the negative effects of genetic incompatibility. We show that in crickets, the eggs of females that mate only with siblings have decreased hatching success. However, if females mate with both a sibling and a non-sibling they avoid altogether the low egg viability associated with sibling matings. If similar effects occur in other species, inbreeding avoidance may be important in understanding the prevalence of multiple mating
    corecore