19,577 research outputs found

    High spatial resolution observations of CUDSS14A: a SCUBA-selected ultraluminous galaxy at high redshift

    Get PDF
    The definitive version is available at www.blackwell-synergy.com '. Copyright Blackwell Publishing DOI : 10.1046/j.1365-8711.2000.03822.xWe present a high-resolutionmillimetre interferometric image of the brightest SCUBA- selected galaxy from the Canada-UK deep SCUBA survey (CUDSS). We make a very clear detection at 1.3 mm, but fail to resolve any structure in the source.Peer reviewe

    Limited complementarity of functional and taxonomic diversity in Chilean benthic marine invertebrates

    Get PDF
    Aim Patterns of benthic biodiversity at the macroecological scale remain poorly characterised throughout the Chilean latitudinal gradient, in part due to the lack of integrated databases, uneven sampling effort, and the use of species richness alone to quantify biodiversity. Different diversity measures, encompassing taxonomic and functional components, may give us extra information on biodiversity relevant to conservation planning and management. Thus, evaluating the spatial complementarity of these measures is essential. Location Coast and continental shelf of Chile. Methods The latitudinal gradient of Chile was divided into five ecoregions according to the Marine Ecosystems of the World classification. Using a 55 × 55 km equal area grid, we estimated the incidence coverage-based estimator (ICE), taxonomic distinctness (Δ+) and three measures of functional diversity: functional richness (FRic), functional evenness (FEve) and functional divergence (FDiv). For each measure, we described spatial patterns, identified hotspots, evaluated hotspot congruence and evaluated complementarity between measures. Results Diversity patterns varied between ecoregions and over the latitudinal gradient. ICE and Δ+ peaked in the Chiloense and Channels and Fjords ecoregions. Δ+ and FRic present a similar pattern at mid-latitudes. FEve showed a contrary pattern, principally with FRic. Areas with high numbers of hotspots differed spatially according to each metric, and three latitudinal bands were observed. ICE, Δ+ and FRic were positively correlated, but the hotspot overlap at the grid cell level was more limited. Main Conclusions The complementarity between taxonomic and functional diversity measures is limited when we observe the overlap between grid cells representing hotspots. However, some regions are consistently identified as highly diverse, with the Magellanic Province (Chiloense and Channels and Fjords ecoregions) being the most important for the richness, taxonomic and functional diversity of benthos. Confirmation of the importance of this region can help prioritise conservation efforts

    Generation and measurement of nonstationary random processes technical note no. 3

    Get PDF
    Generation and measurement of nonstationary stochastic processes related to Monte Carlo studies with analog compute

    The Subillimeter Properties of Extremely Red Objects in the CUDSS Fields

    Full text link
    We discuss the submillimeter properties of Extremely Red Objects (EROs) in the two Canada-UK Deep Submillimeter Survey (CUDSS) Fields. We measure the mean submillimeter flux of the ERO population (to K < 20.7) and find 0.4 +/- 0.07 mJy for EROs selected by (I-K) > 4.0 and 0.56 +/- 0.09 mJy for EROs selected by (R-K) > 5.3 but, these measurements are dominated by discrete, bright submillimeter sources. We estimate that EROs produce 7-11% of the far-infrared background at 850um. This is substantially less than a previous measurement by Wehner, Barger & Kneib (2002) and we discuss possible reasons for this discrepancy. We show that ERO counterparts to bright submillimeter sources lie within the starburst region of the near-infrared color-color plot of Pozzetti & Mannucci (2000). Finally, we claim that pairs or small groups of EROs with separations of < 10 arcseconds often mark regions of strong submillimeter flux.Comment: 9 pages, 8 figures, accepted for publication in Ap

    The Density Spike in Cosmic-Ray-Modified Shocks: Formation, Evolution, and Instability

    Get PDF
    We examine the formation and evolution of the density enhancement (density spike) that appears downstream of strong, cosmic-ray-modified shocks. This feature results from temporary overcompression of the flow by the combined cosmic-ray shock precursor/gas subshock. Formation of the density spike is expected whenever shock modification by cosmic-ray pressure increases strongly. That occurence may be anticipated for newly generated strong shocks or for cosmic-ray-modified shocks encountering a region of higher external density, for example. The predicted mass density within the spike increases with the shock Mach number and with shocks more dominated by cosmic-ray pressure. We find this spike to be linearly unstable under a modified Rayleigh-Taylor instability criterion at the early stage of its formation. We confirm this instability numerically using two independent codes based on the two-fluid model for cosmic-ray transport. These two-dimensional simulations show that the instability grows impulsively at early stages and then slows down as the gradients of total pressure and gas density decrease. Observational discovery of this unstable density spike behind shocks, possibly through radio emission enhanced by the amplified magnetic fields would provide evidence for the existence of strongly cosmic-ray modified shock structures.Comment: 26 pages in Latex and 6 figures. Accepted to Ap

    Bulk and shear relaxation in glasses and highly viscous liquids

    Full text link
    The ratio between the couplings of a relaxational process to compression and shear, respectively, is calculated in the Eshelby picture of structural rearrangements within a surrounding elastic matrix, assuming a constant density of stable structures in distortion space. The result is compared to experimental data for the low-temperature tunneling states in glasses and to Prigogine-Defay data at the glass transition from the literature.Comment: 6 pages, 2 figures, 53 references; version after understanding the Prigogine-Defay ratio at the glass transition in the accompanying paper arXiv:1203.3555 [cond-mat.dis-nn

    Realistic assumptions about spatial locations and clustering of premises matter for models of foot-and-mouth disease spread in the United States

    Get PDF
    Spatially explicit livestock disease models require demographic data for individual farms or premises. In the U.S., demographic data are only available aggregated at county or coarser scales, so disease models must rely on assumptions about how individual premises are distributed within counties. Here, we addressed the importance of realistic assumptions for this purpose. We compared modeling of foot and mouth disease (FMD) outbreaks using simple randomization of locations to premises configurations predicted by the Farm Location and Agricultural Production Simulator (FLAPS), which infers location based on features such as topography, land-cover, climate, and roads. We focused on three premises-level Susceptible-Exposed-Infectious-Removed models available from the literature, all using the same kernel approach but with different parameterizations and functional forms. By computing the basic reproductive number of the infection (R0) for both FLAPS and randomized configurations, we investigated how spatial locations and clustering of premises affects outbreak predictions. Further, we performed stochastic simulations to evaluate if identified differences were consistent for later stages of an outbreak. Using Ripley's K to quantify clustering, we found that FLAPS configurations were substantially more clustered at the scales relevant for the implemented models, leading to a higher frequency of nearby premises compared to randomized configurations. As a result, R0 was typically higher in FLAPS configurations, and the simulation study corroborated the pattern for later stages of outbreaks. Further, both R0 and simulations exhibited substantial spatial heterogeneity in terms of differences between configurations. Thus, using realistic assumptions when de-aggregating locations based on available data can have a pronounced effect on epidemiological predictions, affecting if, where, and to what extent FMD may invade the population. We conclude that methods such as FLAPS should be preferred over randomization approaches
    corecore