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I, INTRODUCTION AND SUMMARY

This Technical Note is concerned with certain aspects of the genera-
tion and use of nonstationary stochastic processes in Monte Carlo studies
using an analog computer. It represents a continuation and extension of
Technical Note 1 of the current project.

Certain aspects of the study are essentially complete, Section II
of this Note outlines in detail a general method for the synthesis of ana-
log computer circuits which when excited by stationary Gaussian white noise
produce nonstationary random outputs with prescribed first and second sta-
tistical moments.

Section III of the Note describes a system for the measurement and
processing of the nonstationary random processes.” Also included in Section
I1I is an error analysis which gives a confidence level criterion for use
with the measured random data.

Section IV presents several examples for which computer circuits are
constructed to realize given covariance functions, and for which the moments
of the experimentally generated processes are measured, These examples il~-
lustrate the use of the synthesis procedure and the analog implementationm,
and also give an indication of the accuracy which can be achieved in this
type of work,

Work is continuing on certain aspects of the analytical representation
of random processes and on possible simplifications and extensions of the
current results, Plans for the continuation are discussed in Section V of

this Note,




IT. SYNTHESIS OF TIME VARYING NETWORKS
FOR THE GENERATION OF NONSTATIONARY STOCHASTIC PROCESSES

2.1 Introduction

Frequently in analog simulation of physical systems it is necessary
to generate stochastic processes. In some cases the generation of stochas-
tic processes is conveniently accomplished by shaping the output of a sta-
tionary Gaussian white noise source with an appropriate computer network.
The structure of this network is related to the statistical moments of the
required process. In case the required process has stationary statistics;
the appropriate network transfer function can be obtained by factoring the
spectral density function of the process. However, for nonstationary pro-
cesses the appropriate network must be obtained in a different manner. In
the sequel, a technique is presented which will realize any random process,
insofar as its first two statistical moments are concerned, as the output
of a linear time varying network excited by stationary white noise. The
technique involves expanding the covariance function of the given process
into a finite series. The series expansion is then used to determine the
coefficients of a linear differential equation whose analog realization is
the required network. The order of the differential equation, and hence the
complexity of the required analog network is directly related to the number of
terms in the series expansion. Without loss in generality the technique
presented herein is concerned only with the realization of processes with
mean zero. Processes with nonzero mean can be realized as the sum of the
random process generated by this technique and a deterministic function equal

to the required mean.




2,2 Representation of a Stochastic Process

Due to a theorem by Doob [l], it is known that for any random process
with given mean and covariance, there exists a Gaussian random process with
identical mean and covariance. Consequently if only the first two statisti-
cal moments of a stochastic process are of interest, the generation of an
appropriate Gaussian process will suffice,

It is also known1 that any Gaussian random variable x(t) with mean zerc
can be represented formally by the equation

t i

x(t) = [ G(t,s)y(s)ds . (2.1)
(o]

*
For processes with nonzero mean a variable x (t) can be defined to obtain

X (t) = x(t) - m(t) = } G(t,s)y(s)ds
0
which is equivalent to Equation (2.1).

In Equation (2.1) y(t) is a stationary Gaussian white noise process and
G(t,s) is a Green's function for an appropriate.linear differential equation, -
A procedure for synthesizing a network for producing x(t) from y(t) can be-
based on Equation (2.1) by noting that this equation represents the solution

to anlnth order linear differential equation of the form

x(n) (n-1) (m)

+p_q(E)x toot a, ()% + a (D)x = q ()y" "+.ot q (0)F + q,(t)y

levy [2], Webb [3].




or in shorter notation, L x=N_y 0 (2.2)

This differential equation and hence the realization of the required stochas~-
tic process can be obtained by an analog computer realization of Equation (2.2)
with a white noise input source. The synthesis of the required network is thus
completed by the specification of the coefficients pi(t), qi(t)o It is conven-
ient for computational purposes to realize Equation (2.2) as n first order dif--
ferential equations rather than as an.nth order equation, This alternate repre-
sentation and its equivalence to the form of Equation (2.2) will be given in a
suﬁsequent section.

2,3 The Covariance Function

The synthesis procedure for the required analog network is developed using.
certain properties of the covariance function for the required process. It is
assumed that this function is known in .some form.

The covariance function for the random variable x(t) with mean zero is

given by

r(t',t) = E[x(t;)x(t,)] (2.3)
where E is the expectation operation and

t'' =1
arger of (t1 and tz)

t = smaller of (t1 and tz)

o

In many cases with physical significance the covariance function can be




expressed as

n
r(tht) = ] (e, (0) ; (2.4)
i=1

where §i(t),9 Yi(t) are known functions of time. If Equation (2.4) does not
apply exactly, Mercer's theorem2 guarantees that any bounded covariance func-
tion can be approximated to arbitrary accuracy by such a sum. Since the form
of Equation (2.4) is particularly useful in developing the reqﬂired netwbrks,
this representation of the covariance function will be uéed throughout,

As indicated above, the output of an analog computer network with a white
noise input can be expressed by Equation (2.,1). A straightforward computation
shows that the covariance function of the output of such a network can be ex-
pressed as

t

r(t',t) = [ G(t",s)G(t,s)ds . (2.5)
o}

The procedure for synthesizing the computer network is developed from Equations
(2.4) and (2.5), in which r(t',t) is known, by determining the parameters in the
differential equation, (of which G(t,s) is the Green's function), by use of the
expansion of Equation (2.4).

2,4 Selected Topics from the Theory of Ordinary Differential Equations

This Section summarizes certain topics from differential equation theory
and provides further background for the synthesis procedure which will be developed

in Section 2.5,

2Davenport and Root [4]




Consider a linear nth order differential equation of the form of Equation

(2.2)., Associated with this equation is the homogeneous differential equation

Lt x=0 o (2.6)
This equation has n linearly independent solutions which are denoted by

¢1(t)9 ¢2(t) o o o ¢n(t)° The linear differential operator Lt can be speci-

fied in terms of the ¢i“s by the relation

Lt x=W (xs’¢10 ¢2’ o o o ¢n)(t) =0 (2.7)

where the Wronskian W is given by

X ¢1 o o o ¢n
4 6
w(xo ¢1 o o o ¢n)(t) = det, ’
X ¢1 $n
™ @ (@
X ¢1 ¢n

In addition, there exists for Equation (2.6) a function H(t,s) which satisfies

Lt H(t,s) = 0




and 1is defined by

H(t)s) = 0’ t<s
and
¢,(s) 0,(8)e o o ¢n(s)
$,(s) 4,(8)0 o o s b (s)
det, : : :
5,0 0,y g D ()
¢, (t) 9,(8)e o o o 6 (T)
H(t,s) = y t>8 (2.8)
w(¢1, %1 0 o o o ¢ )(s)
where
$,(8) o o o o ¢,(s)
&1(s) o o o o &n(S)
W(bis by o o 6 )(s) = det, . . .
6, @ . .o s

The nonhomogeneous differential Equation (2.2) with zero initial conditions

then has the unique solution

t
x(t) = [ H(t,s)N_y(s)ds (2.9)
¢}

where Ns is the operator defined in Equation (2.2).




Then, using Green's formu1a3, Equation (2,9) can be rewritten as

t
x(t) = [ G(t,s)y(s)ds, (2.10)

o
where G(t,s) is the Green's function for an equation of the form of Equation
(2,2), In network terminology, G(t,0) is the impulse response of a network.

As noted previously, it is convenient for computational purposes to
convert the nth order Equation (2.2) into a set of n firs; order differential
equations, It is also convenient to accomplish this in such a manner that no
derivatives of the input process are required. To make this conversion the
following identifications are made. It is assumed here without loss of generality

that m = n-1,

x(t) = xl(t)

o
]

17 %2 7 3 (0% b0y

Wo
]

2 x3 - a“_l(t)x1 + bm_l(t)y

X1 =% - al(t)x1 + bl(t)y

X = -ao(t)x1 + bo(t)y

¥

3Coddington and Levinson [5] p. 86




In matrix notation this set can be written more concisely as

% = A(t) x + B(t)y (2.11)
X = H.E
r Xl q r bm(t) -
% m-1(8)
where x = ° B = ¢ H=[10., . , 0]
i X ) bl(t)
}
RO
-an-l(t) 1 0 e o ° <‘> o o 0
"'an_z(t) 0 1 O ® o o o o 0
A(t) = Q 0 o o

o ] ° o

°
°
o
°
°
°
©
i

-;l(t) 0

L-ao(t) Ooooooooo

It can be verified that the elements aps bk’ in Equation (2.11) are related

to the coefficients Pro Qs in Equation (2.2) by




ok o1-i)r (ae1-§K)

P = L Tr(a-lI-j-K)! 2 n-1-j (2.12)
j=o
m=k
= m=—1) ! (m=j=k)
Y jzo k! (m=-j=k)! b o= . (2.13)

If the Py» 9y are known, Equations (2.12) and (2,13) can be solved sequentially

for the a b

k® k°
Note that Equation (2.11) which is the alternate representation of Equation
(2,2) results in the particularly simple analog realization shown in Figure Z,l.
Associated with the vector differential equation (2,11) is the homogeneous

equation

% = A(t) x . | (2.14)

If ¢1(t)9 ¢2(t) o o e ¢n(t) are again the n linearly independent solutions to
Equation (2.6), then there exists for Equation (2.14) a fundamental matrix solu-

tion ¢(t) satisfying

d
e o(t) = A(t)e (L),

The matrix ¢(t) is defined by

997 ° ¢ %31 ¢ q1

o) = | %12 ° ¢ %22 ¢ ¢ %2 (2,15)

nn

10
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= 4 ,
vhere %13 T de %15-1 T qn-g41n1
and Pp1 = 9o (k=1, . . n).

The nonhomogeneous differential Equation (2.11) with zero initial conditions

then has the unique solution

e(t)o 1(s)B(s)y(s)ds (2.16)

O “—r

x(t) =

where ¢-1 is the matrix inverse of ¢,
Again using the properties of white noise a covariance matrix for the

vector x(t) can be written as

t -
R(t',t) = E[L(tl)z,T(tz)] = [ o(e")e H(s)B(s)B () [0 (s) 1T  (t)ds (2.17)
[+

where ( )T denotes matrix transpose,

2.5 The Synthesis Procedure

With the preceding background it is now possible to outline the synthesis
procedure for the required analog network, The procedure requires a specifica-
tion of the elements a, and bk of the representation of Equation (2.11).,

Combining Equations (2.4) and (2.5) results in

t n
r(t,t) = [ G(t',8)6(t,8)ds = ] 3Ny (8) o (2.18)
o i=1

Then using the fact that G(t',s) satisfies LtG(t',s) = 0 it follows from

12




‘ applying the operator Lt to both sides of Equation (2.18) that

L

n
e 21 3, (t")y,(t) = 0. (2.19)

i
Consequently, the n 61 in Equation (2.4) are solutions to the homogeneous
Equation (206)40 Since n linearly independent solutions to Equation (2.6)
form a unique basis for all solutions, the ai can be taken as the fundamental
set of solutions ¢i(t) defined in Section 2,4, Consequently, the ~ will be
dropped hereafter,

The operator Lt’ and hence the coefficients p, can be obtained using
Equation (2,7). The elements a, of matrix A can then be obtained directly
using Equation (2.12). Once the.ak are determined, the matrix ¢(t) can be.
written using Equation (2.15). There remains only to determine the elements

bk of B,

Upon identifying a matrix D(t) by
€ 1 T -1, T
D(t) = [ & “(s)B(s)B (s)[® (s)] ds , (2.20)
0
the covariance matrix Equation (2.17) can be written as

R(t',t) = 6(t")D(£)o (L), (2.21)

The element in the first row and first column of this matrix is just the

scalar covariance r(t',t). Consequently, using Equations (2.4) and (2.9)

4Note that this assumes that the 51 in Equation (2.4) are linearly independent,
However, if one of the ¢i is not linearly independent, it may be expressed as

a combination of the remainder and the index n can be reduced by omne,

13




n n
I oo ey (0) = 121 ¢, (t")

n
Yod. . (£)e, () (2.22)
1=1 =R R

3

where dij are elements of matrix D, Equation (2.22) is satisfied by

v, (8)
EOLE NN =
and
4y (0) =0, i#] . (2.23)

Equation (2023) determines the matrix D(t) and hence the covariance matrix
R (t',t) is known. The elements of B(t) can be determined from the properties
of this matrix,

Define by R* (t',t) the extension of R(t',t) when the sign of the dif-

ference t, =

1 t2 changes. Then

R¥(£7,£) = #(£)D(E")ON(t') = Ro(t,t'), (2.24)

Let A(t',t) denote the difference

t' :
AE 0 =R - R* = - [ a6 (0)B()BT ()87 Hs)e T (e s, (2.25)
t |

Upon taking the partial derivative of Equation (2.25) with respect to t' and

evaluating at t' = t there results

a8(t',t) = - B(t)BT(t)

o (2,26)
[]
at t'=t

14




Then since the diagonal elements of the matrix BBT are just the bkz, the

elements bk can be evaluated from
V=8 (2.27)
where &1i are the diagonal elements of

3a(t’,t)

ot' t'=t °

The matrix B is then specified completing the synthesis procedure.

2,6 Summary and Example

The synthesis procedure is summarized by the following step-by-step

procedure:

1, Express the covariance for the required process in the form of
Equation (2.4),

2, Using the 2 in Equation (2,4) determine:

a) the operator Lt and coefficients pk(t) by using Equation (2.7).
b) the elements ak(t) from Equation (2.12),
¢) the matrix ¢(t) from Equation (2.15).

3. Determine the elements of matrix D(t) from Equation (2.23),

4, Use Equations (2.21), (2.24), and (2.25) to determine the matrices
R, R*, and A.

S5, Perform the operation of Equation (2.26) and determine the elements

of B(t) by means of Equation (2,27),

6. Realize the resulting differential equation by the circuit showm
in Figure 1,

15




An example will serve to clarify the procedure. Consider the generation
of a process with covariance
r(t’,t) = 4e-t'et + 2e-3t'e3t o
A stationary process has been purposely chosen for clarity. The analytical

results of this example can be verified by spectral factorization.

! —a
Step 1. The given covariance is r(t',t) = 4e et + 2e 3t e3t . By inspec-
tion the ¢1 are ¢1 = Ze—t and ¢2 = /Ee_St
Step 2. The operator th is given by

X Ze--t /Ee-St

th = det, x =22 °F -3/5e-3t =0

® 2e—t Q/Ee-3t
or

¥+ 4 %x+3x =0,
Thus

Py = 4 P = 3o
Then using Equation (2.12)

po = ao = 30
Using Equation (2.15)
-t =3t
¢p = 2e by, = V2e
¢, = —2¢ " 4 4e2e" ¢5p = —B/Ee-3t + 4/76_3t ,

16




so that

2e-t
o(t) =
6e—c
Step 3,
t
_ - - 2e
djp = dyp = 0y dyy —t
2e
Step 40
- P |
2e t V2e 3t e
R(t',t) =
- PN ]
e ° /Ee 3t 0
- L= - [
be (t'-t) + 2e 3(t'-t)
R(tﬂsft) = " - L
12e (e'-t) + 2e 3(ef-t)
and
- -t ¥ - |
% b4e (t=t") + 2e 3(t=t")
R =

-l ot - -
12¢-(t=t7) 4 =3 (et

] - - *
and A(t',t) R.x Rx o

()

17

/Ee3t - 6t
/Ee—3t
2e—t 6e_t

e /a3
12e_(t'-t) + 2e-3(t'-t)

36e (t'-t) + 2e 3(t'-t)

- - - -t ¥
12¢7(E7t7) 4 5 73(e-t?)

- -t ! - -t ¥
36e”(t7tT) 4 p73(t-tT)




Step 5.

-bi(t) =2 (36 (ETTE) 4 ppm3(EE) | gl (2T-t) ) 3(E ),

at’

= 62(t) = L (36T 4 geT3(EITE) | gg (et L g 3(e o),

Step 6.

A(t) =

20

B(t) =

84

The analog computer circuit obtained from Equation (2.11) is shown in

Figure 2.2,

18
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Figure 2.2, Computer Implementation of Example,
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ITTI, MEASUREMENTS ON NONSTATIONARY STOCHASTIC PROCESSES

3,1 Introduction

Section II of this Note describes a synthesis procedure for constructing
an analog computer circuit which produces from a stationary white noise input
a nonstationary output with prescribed first and second moments, This Section
will be devoted to a discussion of measurement techniques for estimating the
first two moments of nonstationary random processes. The procedures to be
described are used in verifying the results of the synthesis procedure, and
can also be used in determining the moments of the outputs of simulated systems
which are excited by nonstationary random processes,
3.2 Averages

A moment of a random process can be defined as an average over time for
a fixed sample function, or as an average over an ensemble of possible sample
functions at a fixed time, For processes which are stationary and ergodic,
these two methods of averaging yield equivalent results. For nonstationary

random processes the two methodé of averaging do not in general yield the

same results, The question of under what conditions time and ensemble averages
are equal 1is difficult, and .this. question has received a considerable amount
of attention from mathematicians in various ergodic theoremsSO In the present
work with nonstationary processes, time variations in such quantities as the
variance and covafiance are of central interest. Thus, time averages which

obscure these variations cannot be used and ensemble averages are employed.

5See for example Doob [1].

20




An ensemble average, for example E xn(t) which defines the nth moment of -
x(t), will in general be a function of the time t at which the average is com-
puted. In the physical generation of a nonstationary random process it is -
desirable to generate a number of different sample functions with a common time
reference, rather than a single sample function as might be generated for a sta-
tionary process, Values of the various sample functions at fixed values of time
with respect to the reference can then be averaged to produce an estimate of the
ensemble average.

The cnonsiderations involved in the physical generation of many sample func-
tions from a nonstationary process are the following, A filter produced by the
synthesis procedure of Section II is in general time variable, and the statis-~"
tical properties of its output will change in synchronism with its time variable
elements, A single sample function, xi(t), of duration.T is thus generated when
the time variable elements start at some reference time t = to and progress -
through their prescribed variation.to t = t + T. A number of sample func-
tions can be generated by cycling the time variable elements so.that they are
first reset to t = to9 and then allowed to progress through their prescribed.
variations to t = to + T, at which time they are reset and the process repeated,
A block diagram for the. equipment required to accomplish this cyclic operation
using an analog. computer is given in Figure 3-1, ‘

3,3 Computer Instrumentation:

The instrumentation chosen to measure the moments of x(t) is shown in
Figure 3-2., The Process Source is the analog computer equipment, including.
the noise generator, required to generate x(t). The Time Reference provides

the signals necessary for cyclic operation of the Process Source as described

21
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in Section II, and also. triggers a Sample Pulse Generator which produces a
signal s(t) which synchronizes the Digital Voltmeter and the Serializer., The
Digital Voltmeter serves as. an. analog—=to—-digital converter, and the Serializer:
converts the parallel binary output code of the voltmeter to a serial code,
The output of the Serializer is a éigital signal x*(t) which is punched on
paper tape.

The instrumentation of Figure 3-2 accomplishes the following. Sample
functions of a nonstationary random process x(t) are produced by the Process
Source so that each is started and ended at a fixed. time with respect to the: -
time variations of the elements in the Process Source, As each sample func-
tion is generated, it is sampled at fixed times. by the analog-to-digital con-
verter with a sampling interval a, The analog samples are thus converted to. -
digital form, and the composite of these. samples make. up. the digital signal
x*(t) which is recorded on paper tape., The final step. in. the measurement is
to process the paper tape with . a general purpose digital computer.,

There are three parameters of the measurement gystem which must be as-
signed values for each measurement, These are (1) the sampling interval a,
(2) the length, T, of each sample function, and (3) the number, n, of sample
functions, The sampling interval.is chosen by considering the highest fre-
quency component of the signal x(t). In most cases, the.smallest possible
sampling interval is used and the Process Source 'is scale.factored so that
the highest frequency components of x(t) are consistent with this interval.
The length T is chosen so that r(t,t’) can be estimated over the ranges of
t and t' of interest in each particular case. In this regard it should be

noted that both t and t' must lie in the interval to to to + T, The third
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parameter, n, is chosen to be sufficiently large to give the required sta-~
tistical accuracy in estimating the moments of x(t). The next paragraph
presents a detailed discussion of the factors involved in choosing n,

3.4 Sampling Errors

As discussed in the last paragraph, the final step in the measurement
procedure is to process the paper tape containing the data on the output
process, x(t), with a general purpose digital computer. The computer is
programmed to compute estimates of the first and second moments of the x(t)
process as an aﬁerage over a finite number of data points. This use of an
average over a finite number of samples to approximate an ensemble average
leads to a sampling error which depends on the number of samples and the
distribution function of the true quantity being estimated, It is the pur-
pose of this paragraph to obtain expressions for the magnitude of the sampling
error,

For generality let z(t) denote any function of x(t) whose ensemble
average is to be estimated. To estimate the first moment of x(t), z(t)
would be chosen equal to x(t); to estimate the second moment it would be
chosen equal to x(t)z9 etc. The paper tape produced by the instrumenta-
tion system contains a finite number n of sample functions from the x(t)

process and thus a quantity Mh(t) defined as
1 2 '
M (t) == 121 z, (t) (3.1)

can be computed from the data on the tape and used as an estimate of the
ensemble average z(t). The statistical properties of Mn(t) are determined

by the statistical properties of z(t) and the number n.
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A quantity of interest is the error, ¢ between Mn(t) and E z(t)

M9

expressed as

€y = Mh(t) - E z(t), (3.2)

This error is a random variable and in some cases it is possible to determine

its distribution function. In other cases it is not possible to determine

the distribution function, and in such cases the first two moments of €y defined

as

Eey = EMn(t) - E z(t) (3.3)
and

EEMZ = EMZ =E { Mn(t) - E z(t)} 2, (3.4)

are adequate to give bounds on the sampling error. The first moment of €y

is frequently referred to as the bias error6, and since

=L
EMn(t) ==

I e~8

E zi(t) = E z(t), (3.5)
i=1

this error is zero, The second moment of €y is called the mean square error,

This error is frequently normalized to obtain the relative error, B2, defined

as

See for example Cramér [6] p. 351.

See for example Middleton [7] p., 681,
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-2 -2
2 M €M

e )2 [E z(t)]?

. (3.6)

Most experiments result in a single evaluation of Mh(t)’ and thus a

single realization of the random variable ¢ The most positive state-

M°
ment that can be made concerning a single sample of a random variable which
can take on any value in a given range is the following: "With probability
Py €y lies in the interval (a,b)". The probability p is often referred to
as a confidence probability and typical choices of p lie in the range 0.8

to 0,99,

If the distribution function of €y is known, the probability

P{a

A

€y $ b } = p(a,b) (3.7)

can be evaluated and, as indicated by the notation, p(a,b), will be a
function of a and b. If the bias error is zero and only Ehz is known,
then use can be made of a modified form of Tchebycheff's inequality8 to
bound the probability that €y is in a given range as expressed by

P e |l 21t 1 51 - vt (3.8)

This is equivalent to a statement of the form: "With confidence probability

greater than 1 - 1/C2, a single determination of €y yields a value whose magnitude

is less than C[Eﬁz]llzo"

8See for example Hammond [8].
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— 2 .
The mean square error €y can be expressed in terms of n and the variance

of z(t) for any distribution function of z(t) as follows. From the definition

of Mn(t),

2.l E f Elz, (t) z,(t)] - [E z(t)]? (3.9)
ooa? g1y 2 ° D

h

In most cases of importance the values of zi(t) and z,(t) from the it and

A
jth sample functions of z(t) will be statistically independent so that

B z,(t)z,(t) = E 2,(6) B 2,(c) = [E 2(8)1%, 1 # 3.

3

Thus
-2 E 22 t E z(t
€, = - (3.10)

But

E zz(t) - [E z(t)]2 is the variance, 022, of z(t)., Thus,

-2 2
ey = O, n (3.11)
2
and B~ is given by
o 2
B% = 2 o (3.12)
n(E z(t)]
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Much more specific results can be obtained for the case of primary
interest in this Note; namely, the case where x(t) is a Gaussian random
variable., Estimates of the mean, the variance, and the covariance of x(t)
will now be considered in turn with the three errors denoted respectively
by €0 ea, and €.

Mean of x(t): 1In this case z(t) is chosen to be equal to x(t) so that

Mn(t) is given by

1 B
M () == 'Z x, (t) = m(t), (3.13)
i=1
and € by
1 @
€, = = 121 xi(t) - E xi(t) o (3.14)

The moments of e, are thus given by

Eem = ( (3.15)
and
5 2
Fe 2 =5 % =X | (3.16)
m m n

Since x(t) is a Gaussian random variable, it follows that xi(t) - E xi(t)
and e, are also Gaussian random variables. Specifically € is Gaussian with
mean zero and variance olen° From tabulated values of the Gaussian distribu-

tion function, bounds on € with a given confidence probability can be obtained.
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For example, with probability 0.8, € lies between i_1°3ox/ /n. The 80%
confidence limits on em/cx are plotted versus n in Figure 3.3,

Variance of x(t): To estimate the variance and covariance, z(t) is

chosen as [xi(t) - m(t)] [xi(t") - mi(t")] so-that

n
M (t,t) = % 121 [x;(€) = m()] [x,(t") = m(t)]. (3.17)

The expected value of Mn(tvgt) is then r(t',t) so that Mh(t',t) is an

unbiased estimate of the covariance. The error, € is defined as

e, = Mn(t",t) - r(t',t) (3.18)

and this quantity can be expressed as

n
e, = ;11- 121 [x, () = m(t")] [x;(€) - m(t)] = r(t’,t) o (3.19)

Tractable results for the statistical properties of the sampling error
can be obtained when Mn(t) is an estimate of the variance of x(t). In this

case the error is denoted €50 and it can be expressed as

[x,(t) -n(©)1% =07 . (3.20)
1

1
e =
n X

(¢}

I o~

i

The random variable xi(t) - m(t) is Gaussian with mean zero and variance

2

O o The variable £ defined as
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xi(t) - m(t)

(3.21)

is then distributed according to a chi-squared distribution9 with n degrees

of freedom,

From the known properties of the chi-squared distribution

Ef = n,
and
E(E - n)? = 2n.
Thus
n(e + o0 2) 2
X
E > -n = 2n,
o]
x
from which it follows that
20 4
2 X
E € = ’
a n
and
4
2 29 2
Bo = 4 =;- °
no
X

9See for example Cramér [6] p. 234,
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The expected value of €y is known to be zero from previous calculations
and this can be verified from Equations (3.21) and (3.22).

The chi-squared distribution is tabulated so that p(a,b) in Equation
(3.7) can be computed as a function of a and b, One form the results can
take is given in Figure 3-3 which gives a plot of a positive and a negative
bound on so/ox2 versus n for a confidence probability of 0.8.

3.5 Summary of Results on Sampling Errors

As indicated in the development above, the curves of Figure 3-3 give

bounds which apply with 80% confidence to the errors in estimating the mean

or the variance of a Gaussian random variable. Specifically the dashed curve

of Figure 3-3 gives a bound on the magnitude of the variable em/ox as a func-
tion of n, the number of samples used to estimate the ensemble average. As

an example of the use of this curve, consider determining bounds on the sampling
error in using 100 samples to approximate the ensemble mean of a Gaugsian vari-
able with a standard deviatien of 2.0. Use of the curve gives a bound of 0.15

on

sm/cx for n = 100, Thus € will lie in the interval (-0.3, + 0.3) with proba-
bility 0.8, Said in another way, with 80% confidence probability the measured
mean differs in magnitude from the true mean by no éore than 0.3.

The solid and dotted curves of Figure 3-3 give respéctively the positive
and negative bounds on the variable eo/ox2 as a function of n., As an example -
of the use of these curves, consider the estimation of the variance of a Gaussian
random variable by the use of either 10 samples or 400 samples. For 10 samples

the curves show that the error eo/ox2 lies in the interval (-0.55, 0.6) with

confidence probability 0.8, The range for n = 400 is (-0.09, 0.09). Stated in
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another way, with probability 0.8 the measured value of the variance lies
between 0.45 and 1.6 times the true value., The corresponding range for n = 400
is 0,91 to 1,09 times the true value.

The standard deviation in the two cases would lie between /ng,and /1.6
times the true value for n = 10, and between /.91 and /1.09 times the true value
for n = 400,

3.6 Computations Performed by the Digital Computer

As discussed in Section III and indicated in Figure 3-2, the final step
in any given measurement is to process the signal x*(t) recorded on paper tape
with a general purpose digital computer., The signal x*(t) consists of samples
taken from various sample functions of the x(t) process at various times deter-
mined by the sampling interval. Thus, assuming no errors in the analog-to-

digital conversion, x*(t) consists of the numbers

xl(to)' xl(tl), xl(tz), o o s xl(T)

;i(to), xi(tl)' xi(tZ)’ o o e xi(T)

x (£ )0 X (8D, % (E))y o o o % (T)

The computer is programmed to compute estimates of the mean, the variance,

and the covariance of x(t) defined respectively as follows

n
B () =2 ] x(t), (3.27)
i=1
6 2(t) =+ rf x.2(t ) - h (), (3.28)
p.4 v n i=1 1 v X v
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and

n

Lox(e) x, () . ‘ (3.29)
i=1

1
n

f(tu, tv) =
Note that f(tua tv) is an estimate of the true covariance plus mx(tu)mx(tv)o
In all cases discussed in this Note, the mean of x(t) was adjusted to be as
nearly zero as possible, Thus, the experimental results in all cases show
that ﬁx(tu)ﬁx(tv) is small with respect to statistical fluctuations, and
£ (tuD tv) is used directly as an estimate of the covariance function unless
otherwise indicated. Figure 3-4 shows the format used for tabular presenta-

tion of the covariance estimates.
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IV, EXAMPLES
Example 1.

This example illustrates the use of the measuring system in experi-
mentally determining the mean, standard deviation, and covariance function
of a stationary process generated to have a prescribed covariance by passing
white noise through a filter designed by the method described in Section II,
The covariance chosen for this example is given by

r(t',0) = K [1+2 (t'-t) e 2(t7-t),

o (4.1)
A similar filter is designed in detail as an example in paragraph 2.6 of
Section II so design details are omitted here. Application of the six step
procedure of paragraph 2.6, Section II leads to a differential equation

describing the analog network, or what is more convenient here to a transfer

function of the form

1 .2

H(jw) = K2 (jw+2 o

(4.2)
Note that since this process is stationary spectral factorization can be
used to obtain the same result. The differential equation or the transfer
function of Equation (4,2) can be implemented on the computer in a straight-
forward way.

The measured values of the mean and the standard deviation of the out-
put process are shown in Figure 4,1, The mean and the standard deviation

fit reasonably within the 80% confidence level error boundaries (shown in

dashed lines) computed in Section III, Figure 4.2 shows the theoretical
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covariance curve of Equation (4.1) along with several curves calculated

from the measured data for different values of time., Note that the measured
covariance curves differ from the theoretical covariance curve by approxi-
mately the same amount that the measured and theoretical standard deviation
curves differ. Measured data, after being processed by the digital computer
is presented in the tabular format described by Figure 3.4 in Section III,
Data for each calculated curve is obtained by fixing t at some value, say

t = toD and plotting the discrete points representing £(t,t°’) as a function
of t’~t for the fixed value of t., Since the process is stationary, £(t',t)
is a function of t’-t only.and the points representing r(t',t) should fall
on the theoretical curve of Equation (4.1) independent of the particular
value of t chosen,

The error to be expected from tﬁe measuring system depends on the
parameter values a and n defined in paragraph 3.3 of Section III. The
results of Figures 4.1 and 4.2 were obtained with a = 1 second and n = 180,
A measurement with o = 1 second and n = 18 leads to the results givgn in
Figures 4.3 and 4.4, These results, as expected, have a much larger statis-
tical fluctuation than the curves for n = 180; however, the 80% confidence
limit error boundaries are still indicative of the errors encountered.,
Example 2

This example illustrates the synthesis procedure for deriving a time
varying filter which with a white noise input delivers an output with a
prescribed nonstationary second moment, and also demonstrates the use of the

measuring system in ascertaining that the output has the desired second moment,
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The covariance function to be generated in this example is given by

1

r (t',t) = .

° (4.3)
The filter design is carried out by following the six step procedure of

paragraph 2.6 of Section II,

1. A comparison of Equation (4.3) with Equation (2.4) yields the result

1
¢1’t’Y1—1’

¢1=Yi=0’1#1° (494)

2, (a) Equation (2.7) is used to give

x &
t 2
Lx = =0 = - (x/t + x/t°)
t 1
§ -
t2
which simplifies to
o 1
X+‘Ex=0. (405)

(b) ao(t) = po(t) from Equation (2.12), and

(c) o(t) = ¢1(t) = ¢11(t) from Equation (2.15).
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3

4,

and

5.

or

6,

Equation (2.23) gives the result

Equations (2.21), (2.24), and (2.25) determine

R = ¢(t')D(t)¢T(t) =

bedpol
t t

Use of Equations (2.26) and (2.27) allows the calculation of

b as
(o]

1)

o

— = ===~}

ot' |t'=t 2
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where y is the white noise input and x is the desired nonstationary output
process with covariance r(t’,t) = %'o

The synthesis procedure is complete at this point and the remaining
discussion concerns implementing the filter on the analog computer and
measuring the moments of the generated process.

A straightforward implementation of Equation (4,11) is shown in Figure
4,5, Since %-is unbounded at t=o, the solution must start at some t greater
than zero, and to = 1 was chosen in this case, In the circuit of Figure 4.5,
x(t=1) is the required integrator initial condition. Since x(t=1) is a random
variable proportional to }ydtp it is difficult to apply this initial condi-
tion, To circumvent thisodifficulty it was convenient to implement the computer
circuit as shown in Figure 4.6 rather than in the form of Figure 4,5,

The computer diagram of Figure 4.6 is derived by making the substitution

X = uv in

e 4 X X
X + palalies (4.11)
which gives
dv v du _ 3y
u (dt + t) + (v It t) 0. (4.12)
Each part of Equation (4.12) is solved separately to give
1
v = t (4013)
and
u = f ydt + c. (4.14)
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In the circuit of Figure 4.6 v is held constant at 100V. over the first
second while the integrator starts at t=o with an initial condition of 0.
This sets c=c and produces u = }ydt as the integrator output voltage at
t=1, The final output, x = uv,ois thus correct for the interval 1stsl0.
The measuring system described in Section III, paragraph 3.3 when used
to measure the output process x(t) simulated on the analog computer in the
manner shown in Figure 4.6, gives the results shown in Figures 4.7 and 4.8,
Figure 4,7 shows the mean and the process standard deviation about the

mean, The theoretical value of the mean is zero and the theoretical curve

for the standard deviation is obtained from

o(t) = Kr(t’,¢)

[}
_
3
—~
(nd
-
"
S’

, (4.15)

where K is the power spectral density of the white noise., The 807 confidence
level is indicated about the theoretical curve by the dashed lines. Note
that the measured points check very well with respect to the expected error
limits, Figure 4.8 shows the covariance function, r(t',t), as a function of
t'=t with t=1, The theoretical curve is calculated from

1
r(t’;t) = o o
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Note that the points produced by the measuring system follow the theoreti-
cal curve with an error about the same as that observed in the standard
deviation measurement,

Example 3

The third example realizes a more complicated covariance function of

the form

t
CEEICES)) . (4.16)

r(t’,;t) =
The theoretical equation for the standard deviation is given by
/t
U(C) - ?"_T . (4017)

Application of the synthesis procedure leads to

R e R (4.18)
as the defining equation of the desired filter. This equation is implemented
in a straightforward manner by the computer diagram of Figure 4.9.

The measuring system, when used to measure the ouptut process x(t)
generated as shown in Figure 4.9, gives the results shown by the dots in
Figures 4,10 and 4,11, Figure 4,10 shows the mean, whose theoretical value
is zero, and the standard deviation about the mean for which the theoretical
curve is given by Equation (4.17). The 80% confidence level error is indicated

about the theoretical curves by the dashed lines., Figure 4,11 shows the

50



1+3

bl
ks YA = Alallvx + ¥ Jo uoriejuswaidwy ‘*f°4 2andyg

H .

L+
0S

RN

L+4

L+ [+ 4
Ag- 0S

51




MEAN OR STANDARD DEVIATION

(NORMALIZED)

THEORETICAL 0% MEASURED 80% CONFIDENCE

CURVE ' POINTS ) LEVEL ERROR

10 /‘P\\ |
. II’\ \\\ G(T)

r | T4 RN
R V/a el S NG

% \\\ = \\§\§~~-
6 — ==L 9
4 7L
2 m(t)

SRR S i il il TP R SN F
0

\N-P-___!E_____x___x___x_.._}{___‘(
-.2
-4

0 1 2 3 4 5 6 7 8 9

t (seconds)

Figure 4,10, Normalized Mean and Standard Deviation as a
Function of Time for Lxample 3, n = 150,

52

10



NORMALIZED COVARIANCE FUNCTION

[

10 X THEORETICAL

CURVE
8 1 ox MEASURED |
\\$\ £=3 POINTS
6 |
£=1 \
4 ’\\\\;
. ~
I X X
2 L-g,______1
0
=2
—4

0 1 2 3 4 5 6 7 8 9

t' — t (seconds)

Figure 4.11. Measured and Theoretical Covariance Functions
With t=1 and t=3 for Example 3, n = 150,

53

10



covariance function x(t',t) as a function of t' for two choices of t with
the theoretical curves of Equation (4.16) plotted as solid curves. Note
again that the measured points follow the theoretical curve with an error of

the same order of magnitude as that observed in the standard deviation

measurement,
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V. CONCLUSIONS

Presented in this Technical Note are methods for the generation and
measurement of nonstationary random variables., The desired random variables
are generated using analog computer circuitry and a Gaussian white noise
source, A technique for synthesizing the computer circuit from the specified
first two statistical moments of the required process has been developed and
its correctness and utility have been demonstrated.

A specified Gaussian process, which is determined completely by its
first two statistical moments, is realized exactly by this procedure., If the
required process is non Gaussian, the procedure generates an approximation to
the required process having the same first two moments as the required process.

A method for measuring and processing the generated random variables is
also presented. An errorAanalysis which yields confidence estimates for the
measurement and processing operations is included, Several examples which
demonstrate the utility of the generation and measuring techniques have been
completed and in each case the random processes generated show an excellent
agreement between prescribed and measured parameters when the results are
subjected to.the computed error bounds.,

Further work in connection with this study will be devoted to the analytical
representation of nonstationary processes, In particular, methods for construct-
ing appropriate analytical representations of the first two statistical moments
from measured data on nonstationary processes will be investigated. Also, addi-
tional effort will be devoted to investigating possible extensions and simplifi-

cations of the results presented in this Note.
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