We examine the formation and evolution of the density enhancement (density
spike) that appears downstream of strong, cosmic-ray-modified shocks. This
feature results from temporary overcompression of the flow by the combined
cosmic-ray shock precursor/gas subshock. Formation of the density spike is
expected whenever shock modification by cosmic-ray pressure increases strongly.
That occurence may be anticipated for newly generated strong shocks or for
cosmic-ray-modified shocks encountering a region of higher external density,
for example. The predicted mass density within the spike increases with the
shock Mach number and with shocks more dominated by cosmic-ray pressure. We
find this spike to be linearly unstable under a modified Rayleigh-Taylor
instability criterion at the early stage of its formation. We confirm this
instability numerically using two independent codes based on the two-fluid
model for cosmic-ray transport. These two-dimensional simulations show that the
instability grows impulsively at early stages and then slows down as the
gradients of total pressure and gas density decrease. Observational discovery
of this unstable density spike behind shocks, possibly through radio emission
enhanced by the amplified magnetic fields would provide evidence for the
existence of strongly cosmic-ray modified shock structures.Comment: 26 pages in Latex and 6 figures. Accepted to Ap