21 research outputs found

    A New Lecture-Tutorial for Teaching about Molecular Excitations and Synchrotron Radiation

    Get PDF
    Light and spectroscopy are among the most important and frequently taught topics in introductory, college-level, general education astronomy courses. This is due to the fact that the vast majority of observational data studied by astronomers arrives at Earth in the form of light. While there are many processes by which matter can emit and absorb light, Astro 101 courses typically limit their instruction to the Bohr model of the atom and electron energy level transitions. In this paper, we report on the development of a new Lecture-Tutorial to help students learn about other processes that are responsible for the emission and absorption of light, namely molecular rotations, molecular vibrations, and the acceleration of charged particles by magnetic fields.Comment: 13 pages, 7 figures Accepted for publication in The Physics Teache

    A Mid-Infrared Census of Star Formation Activity in Bolocam Galactic Plane Survey Sources

    Full text link
    We present the results of a search for mid-infrared signs of star formation activity in the 1.1 mm sources in the Bolocam Galactic Plane Survey (BGPS). We have correlated the BGPS catalog with available mid-IR Galactic plane catalogs based on the Spitzer Space Telescope GLIMPSE legacy survey and the Midcourse Space Experiment (MSX) Galactic plane survey. We find that 44% (3,712 of 8,358) of the BGPS sources contain at least one mid-IR source, including 2,457 of 5,067 (49%) within the area where all surveys overlap (10 deg < l < 65 deg). Accounting for chance alignments between the BGPS and mid-IR sources, we conservatively estimate that 20% of the BPGS sources within the area where all surveys overlap show signs of active star formation. We separate the BGPS sources into four groups based on their probability of star formation activity. Extended Green Objects (EGOs) and Red MSX Sources (RMS) make up the highest probability group, while the lowest probability group is comprised of "starless" BGPS sources which were not matched to any mid-IR sources. The mean 1.1 mm flux of each group increases with increasing probability of active star formation. We also find that the "starless" BGPS sources are the most compact, while the sources with the highest probability of star formation activity are on average more extended with large skirts of emission. A subsample of 280 BGPS sources with known distances demonstrates that mass and mean H_2 column density also increase with probability of star formation activity.Comment: 20 pages, 12 figures, 3 tables. Accepted for publication in ApJ. Full Table 2 will be available online through Ap

    A Survey of Local Group Galaxies Currently Forming Stars. I. UBVRI Photometry of Stars in M31 and M33

    Full text link
    We present UBVRI photometry obtained from Mosaic images of M31 and M33 using the KPNO 4-m telescope. The survey covers 2.2 sq degrees of M31, and 0.8 sq degrees of M33, chosen so as to include all of the regions currently active in forming massive stars. The catalog contains 371,781 and 146,622 stars in M31 and M33, respectively, where every star has a counterpart (at least) in B, V, and R. We compare our photometry to previous studies. We provide cross references to the stars confirmed as members by spectroscopy, and compare the location of these to the complete set in color-magnitude diagrams. While follow-up spectroscopy is needed for many projects, we demonstrate the success of our photometry in being able to distinguish M31/M33 members from foreground Galactic stars. We also present the results of newly obtained spectroscopy, which identifies 34 newly confirmed members, including B-A supergiants, the earliest O star known in M31, and two new Luminous Blue Variable candidates whose spectra are similar to that of P Cygni.Comment: Accepted by the Astronomical Journal. A version with higher resolution figures can be found at: http://www.lowell.edu/users/massey/M3133.pdf.g

    An Infrared through Radio Study of the Properties and Evolution of IRDC Clumps

    Full text link
    We examine the physical properties and evolutionary stages of a sample of 17 clumps within 8 Infrared Dark Clouds (IRDCs) by combining existing infrared, millimeter, and radio data with new Bolocam Galactic Plane Survey (BGPS) 1.1 mm data, VLA radio continuum data, and HHT dense gas (HCO+ and N2H+) spectroscopic data. We combine literature studies of star formation tracers and dust temperatures within IRDCs with our search for ultra-compact (UC) HII regions to discuss a possible evolutionary sequence for IRDC clumps. In addition, we perform an analysis of mass tracers in IRDCs and find that 8 micron extinction masses and 1.1 mm Bolocam Galactic Plane Survey (BGPS) masses are complementary mass tracers in IRDCs except for the most active clumps (notably those containing UCHII regions), for which both mass tracers suffer biases. We find that the measured virial masses in IRDC clumps are uniformly higher than the measured dust continuum masses on the scale of ~1 pc. We use 13CO, HCO+, and N2H+ to study the molecular gas properties of IRDCs and do not see any evidence of chemical differentiation between hot and cold clumps on the scale of ~1 pc. However, both HCO+ and N2H+ are brighter in active clumps, due to an increase in temperature and/or density. We report the identification of four UCHII regions embedded within IRDC clumps and find that UCHII regions are associated with bright (>1 Jy) 24 micron point sources, and that the brightest UCHII regions are associated with "diffuse red clumps" (an extended enhancement at 8 micron). The broad stages of the discussed evolutionary sequence (from a quiescent clump to an embedded HII region) are supported by literature dust temperature estimates; however, no sequential nature can be inferred between the individual star formation tracers.Comment: 33 pages, 26 figures, 6 tables, accepted for publication in ApJ. Full resolution version available here: http://casa.colorado.edu/~battersb/Publications.htm

    Formation and Evolution of Planetary Systems: Placing Our Solar System in Context with Spitzer

    Get PDF
    We summarize the progress to date of our Legacy Science Program entitled "The Formation and Evolution of Planetary Systems" (FEPS) based on observations obtained with the Spitzer Space Telescope during its first year of operation. In addition to results obtained from our ground-based preparatory program and our early validation program, we describe new results from a survey for near-infrared excess emission from the youngest stars in our sample as well as a search for cold debris disks around sun-like stars. We discuss the implications of our findings with respect to current understanding of the formation and evolution of our own solar system.Comment: 8 postscript pages including 3 figures. To appear in "Spitzer New Views of the Cosmos" ASP Conference Series, eds. L. Armus et al. FEPS website at http://feps.as.arizona.ed

    The Bolocam Galactic Plane Survey IV: 1.1 and 0.35 mm Dust Continuum Emission in the Galactic Center Region

    Full text link
    The Bolocam Galactic Plane Survey (BGPS) data for a six square degree region of the Galactic plane containing the Galactic center is analyzed and compared to infrared and radio continuum data. The BGPS 1.1 mm emission consists of clumps interconnected by a network of fainter filaments surrounding cavities, a few of which are filled with diffuse near-IR emission indicating the presence of warm dust or with radio continuum characteristic of HII regions or supernova remnants. New 350 {\mu}m images of the environments of the two brightest regions, Sgr A and B, are presented. Sgr B2 is the brightest mm-emitting clump in the Central Molecular Zone and may be forming the closest analog to a super star cluster in the Galaxy. The Central Molecular Zone (CMZ) contains the highest concentration of mm and sub-mm emitting dense clumps in the Galaxy. Most 1.1 mm features at positive longitudes are seen in silhouette against the 3.6 to 24 {\mu}m background observed by the Spitzer Space Telescope. However, only a few clumps at negative longitudes are seen in absorption, confirming the hypothesis that positive longitude clumps in the CMZ tend to be on the near-side of the Galactic center, consistent with the suspected orientation of the central bar in our Galaxy. Some 1.1 mm cloud surfaces are seen in emission at 8 {\mu}m, presumably due to polycyclic aromatic hydrocarbons (PAHs). A ~0.2\degree (~30 pc) diameter cavity and infrared bubble between l \approx 0.0\degree and 0.2\degree surrounds the Arches and Quintuplet clusters and Sgr A. The bubble contains several clumpy dust filaments that point toward Sgr A\ast; its potential role in their formation is explored. [abstract truncated]Comment: 76 pages, 22 figures, published in ApJ: http://iopscience.iop.org/0004-637X/721/1/137

    The Bolocam Galactic Plane Survey V: HCO+ and N2H+ Spectroscopy of 1.1 mm Dust Continuum Sources

    Get PDF
    We present the results of observations of 1882 sources in the Bolocam Galactic Plane Survey (BGPS) at 1.1 mm with the 10m Heinrich Hertz Telescope simultaneously in HCO+ J=3-2 and N2H+ J=3-2. We detect 77% of these sources in HCO^+ and 51% in N2H+ at greater than 3σ\sigma. We find a strong correlation between the integrated intensity of both dense gas tracers and the 1.1 mm dust emission of BGPS sources. We determine kinematic distances for 529 sources (440 in the first quadrant breaking the distance ambiguity and 89 in the second quadrant) We derive the size, mass, and average density for this subset of clumps. The median size of BGPS clumps is 0.75 pc with a median mass of 330 M⊙_{\odot} (assuming T_{Dust}=20 K). The median HCO+ linewidth is 2.9 km s−1^{-1} indicating that BGPS clumps are dominated by supersonic turbulence or unresolved kinematic motions. We find no evidence for a size-linewidth relationship for BGPS clumps. We analyze the effects of the assumed dust temperature on the derived clump properties with a Monte Carlo simulation and we find that changing the temperature distribution will change the median source properties (mass, volume-averaged number density, surface density) by factors of a few. The observed differential mass distribution has a power-law slope that is intermediate between that observed for diffuse CO clouds and the stellar IMF. BGPS clumps represent a wide range of objects (from dense cores to more diffuse clumps) and are typically characterized by larger sizes and lower densities than previously published surveys of high-mass star-forming regions. This collection of objects is a less-biased sample of star-forming regions in the Milky Way that likely span a wide range of evolutionary states.Comment: 48 pages, 25 figures, Accepted for publicatio

    Interstellar Gas Clouds And Gen. Ed. Astronomy Students: Who Are They? How Do They Behave?

    No full text
    The first chapter begins with the observations of 1,882 sources from the Bolo- cam Galactic Plane Survey (BGPS) at 1.1 mm in HCO+ J = 3 − 2 and N2H+ J = 3 − 2. We determine kinematic distances for 529 sources and derive the size, mass, and average density for this subset of clumps. The median size of BGPS clumps is 0.75 pc with a median mass of 330 M⊙ (assuming TDust = 20 K). The median HCO+ linewidth is 2.9 km s−1 indicating the clumps are not thermally supported and provide no evidence for a size-linewidth relationship. This collec- tion of objects is a less-biased sample of star-forming regions in the Milky Way that likely span a wide range of evolutionary states. We study in detail the G111 Infrared Dark Cloud northwest of NGC 7538 with the K-band Focal Plane Array. We map NH3 (1,1) and (2,2), H2O maser, and CCS emission simultaneously with the GBT. We find the NH3 gas traces the 1.1 mm BGPS structure very well with gas kinetic temperatures consistently close to 15 K. Typical column densities are 2.5 × 1014 cm−2 with a median abun- dance of NH3 to H2 of 5.94 × 10−8. The median linewidth of the NH3 emission is 0.64 km s−1indicating the filament is not thermally supported. The NH3 is subthermally populated along the entire filament. Individual NH3 peaks have a median size of 0.61 pc, mass of 188 M⊙, and density of 3.4×103 cm−3. An activity analysis shows the most active star forming regions are found at the junctions of the subfilaments that make up the larger G111 IRDC. The last chapter describes our systematic examination of individual student responses to the Light and Spectroscopy Concept Inventory national dataset.We use classical test theory to form a framework of results that is used to evaluate item difficulties, item discriminations, and the overall reliability of the LSCI. We perform an analysis of individual student’s normalized gains, providing further insight into the prior results from this data set. This investigation allows us to better understand the efficacy of using the LSCI to measure student achievement
    corecore