179 research outputs found

    STM IMAGING OF MAGNETIC DOTS WITH FERROMAGNETIC TIP

    Get PDF
    We report on imaging of isolated, few nanometers in size, magnetic dots (Co, Ni) by the use of a scanning tunneling microscope equipped with a ferromagnetic Co tip in the presence of external magnetic field. The dependence of apparent height of dots as a function of magnetic field takes a hysteresis-like shape. We discuss possible mechanisms of the scanning tunneling microscope tip interactions with dots

    Study of interfaces chemistry in type-II GaSb/InAs superlattice structures

    Get PDF
    There is a considerable interest in type-II GaSb/InAs superlattice system due to several modern applications including infrared detectors. In these studies X-ray Photoelectron Spectroscopy (XPS) and Spectroscopic Ellipsometry (SE) have been used to extensive characterization of the surface and interface of GaSb/InAs superlattice. Application of XPS and SE techniques provide precise information from topmost layers of structure and allow excluding presence of GaAs-type interfaces in GaSb/InAs superlattices. Simultaneously, these results indicate that InSb-type or GaInSb-type interfaces have been detected in the structures studied

    Formins Determine the Functional Properties of Actin Filaments in Yeast

    Get PDF
    The actin cytoskeleton executes a broad range of essential functions within a living cell. The dynamic nature of the actin polymer is modulated to facilitate specific cellular processes at discrete locations by actin-binding proteins (ABPs), including the formins and tropomyosins (Tms). Formins nucleate actin polymers, while Tms are conserved dimeric proteins that form polymers along the length of actin filaments. Cells possess different Tm isoforms, each capable of differentially regulating the dynamic and func- tional properties of the actin polymer. However, the mecha- nism by which a particular Tm localizes to a specific actin polymer is unknown. Here we show that specific formin family members dictate which Tm isoform will associate with a particular actin filament to modulate its dynamic and functional properties at specific cellular locations. Exchanging the localization of the fission yeast formins For3 and Cdc12 results in an exchange in localizations of Tm forms on actin polymers. This nucleator-driven switch in filament composition is reflected in a switch in actin dynamics, together with a corresponding change in the filament’s ability to regulate ABPs and myosin motor activity. These data establish a role for formins in dictating which specific Tm variant will associate with a growing actin filament and therefore specify the functional capacity of the actin filaments that they create

    Mo/Si multilayer-coated amplitude division beam splitters for XUV radiation sources

    Get PDF
    Amplitude-division beam splitters for XUV radiation sources have been developed and extensively characterized. Mo/Si multilayer coatings were deposited on 50 nm-thick SiN membranes. By changing the multilayer structure (periodicity, number of bilayers, etc.) the intensity of the reflected and transmitted beams were optimized for selected incident radiation parameters (wavelength, incident angle). The developed optical elements were characterized by means of XUV reflectometry and transmission measurements, atomic force microscopy and optical interferometry. Special attention was paid to the spatial homogeneity of the optical response and reflected beam wavefront distortions. Here the results of the characterization are presented and improvements required for advanced applications at XUV free-electron lasers are identified. A flatness as low as 4 nm r.m.s. on 3 × 3 mm beam splitters and 22 nm r.m.s. on 10 × 10 mm beam splitters has been obtained. The high-spatial-frequency surface roughness was about 0.7-1 nm r.m.s. The middle-spatial-frequency roughness was in the range 0.2-0.8 nm r.m.s. The reflection and transmission of the beam splitters were found to be very homogeneous, with a deviation of less than 2% across the full optical element

    Optimized metabotype definition based on a limited number of standard clinical parameters in the population-based KORA study

    Get PDF
    The aim of metabotyping is to categorize individuals into metabolically similar groups. Earlier studies that explored metabotyping used numerous parameters, which made it less transferable to apply. Therefore, this study aimed to identify metabotypes based on a set of standard laboratory parameters that are regularly determined in clinical practice. K-means cluster analysis was used to group 3001 adults from the KORA F4 cohort into three clusters. We identified the clustering parameters through variable importance methods, without including any specific disease endpoint. Several unique combinations of selected parameters were used to create different metabotype models. Metabotype models were then described and evaluated, based on various metabolic parameters and on the incidence of cardiometabolic diseases. As a result, two optimal models were identified: a model composed of five parameters, which were fasting glucose, HDLc, non-HDLc, uric acid, and BMI (the metabolic disease model) for clustering; and a model that included four parameters, which were fasting glucose, HDLc, non-HDLc, and triglycerides (the cardiovascular disease model). These identified metabotypes are based on a few common parameters that are measured in everyday clinical practice. These metabotypes are cost-effective, and can be easily applied on a large scale in order to identify specific risk groups that can benefit most from measures to prevent cardiometabolic diseases, such as dietary recommendations and lifestyle interventions

    Fecal bile acids and neutral sterols are associated with latent microbial subgroups in the human gut

    Get PDF
    Bile acids, neutral sterols, and the gut microbiome are intricately intertwined and each affects human health and metabolism. However, much is still unknown about this relationship. This analysis included 1280 participants of the KORA FF4 study. Fecal metabolites (primary and secondary bile acids, plant and animal sterols) were analyzed using a metabolomics approach. Dirichlet regression models were used to evaluate associations between the metabolites and twenty microbial subgroups that were previously identified using latent Dirichlet allocation. Significant associations were identified between 12 of 17 primary and secondary bile acids and several of the microbial subgroups. Three subgroups showed largely positive significant associations with bile acids, and six subgroups showed mostly inverse associations with fecal bile acids. We identified a trend where microbial subgroups that were previously associated with “healthy” factors were here inversely associated with fecal bile acid levels. Conversely, subgroups that were previously associated with “unhealthy” factors were positively associated with fecal bile acid levels. These results indicate that further research is necessary regarding bile acids and microbiota composition, particularly in relation to metabolic health

    The Solar Dynamics Observatory (SDO) Education and Outreach (E/PO) Program: Changing Perceptions One Program at a Time

    Get PDF
    We outline the context and overall philosophy for the combined Solar Dynamics Observatory (SDO) Education and Public Outreach (E/PO) program, present a brief overview of all SDO E/PO programs along with more detailed highlights of a few key programs, followed by a review of our results to date, conclude a summary of the successes, failures, and lessons learned, which future missions can use as a guide, while incorporating their own content to enhance the public's knowledge and appreciation of science and technology as well as its benefit to society

    Comparison of Population-Based Association Study Methods Correcting for Population Stratification

    Get PDF
    Population stratification can cause spurious associations in population–based association studies. Several statistical methods have been proposed to reduce the impact of population stratification on population–based association studies. We simulated a set of stratified populations based on the real haplotype data from the HapMap ENCODE project, and compared the relative power, type I error rates, accuracy and positive prediction value of four prevailing population–based association study methods: traditional case-control tests, structured association (SA), genomic control (GC) and principal components analysis (PCA) under various population stratification levels. Additionally, we evaluated the effects of sample sizes and frequencies of disease susceptible allele on the performance of the four analytical methods in the presence of population stratification. We found that the performance of PCA was very stable under various scenarios. Our comparison results suggest that SA and PCA have comparable performance, if sufficient ancestral informative markers are used in SA analysis. GC appeared to be strongly conservative in significantly stratified populations. It may be better to apply GC in the stratified populations with low stratification level. Our study intends to provide a practical guideline for researchers to select proper study methods and make appropriate inference of the results in population-based association studies
    • 

    corecore