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Abstract: The aim of metabotyping is to categorize individuals into metabolically similar groups.
Earlier studies that explored metabotyping used numerous parameters, which made it less trans-
ferable to apply. Therefore, this study aimed to identify metabotypes based on a set of standard
laboratory parameters that are regularly determined in clinical practice. K-means cluster analysis was
used to group 3001 adults from the KORA F4 cohort into three clusters. We identified the clustering
parameters through variable importance methods, without including any specific disease endpoint.
Several unique combinations of selected parameters were used to create different metabotype models.
Metabotype models were then described and evaluated, based on various metabolic parameters and
on the incidence of cardiometabolic diseases. As a result, two optimal models were identified: a
model composed of five parameters, which were fasting glucose, HDLc, non-HDLc, uric acid, and
BMI (the metabolic disease model) for clustering; and a model that included four parameters, which
were fasting glucose, HDLc, non-HDLc, and triglycerides (the cardiovascular disease model). These
identified metabotypes are based on a few common parameters that are measured in everyday clinical
practice. These metabotypes are cost-effective, and can be easily applied on a large scale in order to
identify specific risk groups that can benefit most from measures to prevent cardiometabolic diseases,
such as dietary recommendations and lifestyle interventions.

Keywords: metabotype; cluster analysis; parameter selection; clinical marker; metabolic diseases;
cardiovascular diseases
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1. Introduction

Metabotyping describes the process of forming subgroups based on similarities in sub-
jects’ metabolic or phenotypic characteristics. These subgroups are termed as metabotypes
or metabolic phenotypes [1–4]. All individuals within a subgroup show a high metabolic
similarity, while the different subgroups are all distinct from each other. This allows for
the identification and description of specific subgroups according to their cardiometabolic
disease risk [5–8]. Evidence suggests that dietary recommendations that are provided
at personalized and metabotype levels tend to be more effective than providing general
dietary advice [1,9–11]. Thus, metabotyping is a promising approach for the develop-
ment of personalized preventive measures, such as dietary recommendations and lifestyle
interventions [1,2,6,12].

Several studies have been performed to define metabotypes [2,3,13]. However, due
to the use of different methods and inconsistent definitions, studies have shown large
heterogeneities in the types and numbers of parameters used to identify metabotypes or
metabolic phenotypes [3]. Some studies have even used a large number of metabolic vari-
ables from different metabolic pathways, leading to comprehensive metabotyping [14–18].
Similarly, in our previous study by Riedl and co-authors [15], we identified comprehensive
metabotypes in the German population-based KORA study using a range of biochemical
and anthropometric parameters.

However, many metabolic parameters are not routinely measured in primary care,
making it difficult to implement a comprehensive metabotype concept in general research
settings. Therefore, in order to identify a metabotype concept that can be broadly applica-
ble in daily practice, a set of routinely measured clinical parameters, so-called “standard
laboratory parameters”, should be explored. The importance of having an easily appli-
cable metabotype definition for use on a large scale to identify subjects with a specific
cardiometabolic disease risk, has also been highlighted in a recent perspective paper by
Palmnäs et al. [12]. Currently, only a few studies have investigated the use of a reduced
set of available parameters to identify metabotypes [5,8,19,20]. In this study, we aimed to
develop a statistically guided selection of variables for metabotypes, without disregarding
the availability and clinical relevance of parameters.

Therefore, this study aimed to optimize the metabotype definition by reducing the
clinical parameters to a few that were economical and routinely measured. For this purpose,
we used machine learning-based variable importance methods to assess the suitability
of parameters for identifying different metabotypes. In order to evaluate the results, we
described the metabotype clusters using various metabolic parameters, as well as the
incidences of various cardiometabolic diseases.

2. Materials and Methods
2.1. Study Population

All data for this study were obtained from the population-based KORA F4 (2006–2008)
and KORA FF4 (2013/2014) studies. The data set represents the first and second follow-up
examinations of the KORA S4 study, conducted between 1999 and 2001 (n = 4261 partic-
ipants aged 25–74 years) in the region of Augsburg in southern Germany [21]. In total,
3080 individuals took part in the KORA F4 study, and 2279 individuals participated in the
7-year follow-up examination (KORA FF4). Among these, 2161 individuals participated in
both the KORA F4 and KORA FF4 studies. In both studies, participants were invited to
the study center where bio-samples were collected, and trained study nurses performed
standardized physical examinations as well as computer-assisted face-to-face interviews.
Likewise, all participants answered self-administered questionnaires. An in-depth descrip-
tion of the primary study design [21] and of the KORA F4 [22,23] and KORA FF4 [24]
studies was reported previously. Written informed consent was provided by all partici-
pants, and the studies were approved by the Ethics Committee of the Bavarian Medical
Association, and were conducted in accordance with the Declaration of Helsinki.
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2.2. Biochemical and Anthropometric Parameters

We identified the metabotypes based on fasting biochemical parameters, along with
body mass index (BMI) data that were available from the KORA F4 study. BMI was
used as a continuous measure in kg/m2. Parameters such as high-density lipoprotein
cholesterol (HDLc), total cholesterol (TC), triglycerides (TG), glucose, insulin, uric acid,
high-sensitive C-reactive protein (hs-CRP), gamma-glutamyltransferase (GGT), glutamate-
pyruvate transaminase (GPT), glutamate-oxaloacetate transaminase (GOT), and alkaline
phosphatase (AP), were measured in serum samples. Non-HDLc cholesterol was calculated
by subtracting HDLc from TC. Leukocyte count and glycated hemoglobin (HbA1c) were
measured from fresh venous whole EDTA blood samples. More technical details on the
handling of blood samples and the derivation of biomarker measurements can be found
elsewhere [15].

2.3. Socio-Demographic and Lifestyle Variables

Socio-demographic data included sex, age (in years), and education; the latter was
categorized according to the German education system into < 10 years, 10–<12 years, and
≥ 12 years at school. Lifestyle data included physical activity (active: active for ≥2 h per
week; inactive: active for <2 h per week), smoking status (smoker, ex-smoker, and never-
smoker), and alcohol consumption (≥40 g/day, 20–<40 g/day, 0–<20 g/day, and 0g/day).
According to the WHO [25], BMI was categorized into underweight (BMI < 18.5 kg/m2),
normal weight (BMI 18.5–<25 kg/m2), overweight (BMI 25–<30 kg/m2), and obese
(BMI ≥ 30 kg/m2).

2.4. Health Status

In both the F4 and FF4 studies, cardiometabolic diseases were assessed during stan-
dardized face-to-face computer-assisted interviews and physical examinations. Metabolic
diseases were defined as follows: hypertension by a blood pressure of ≥140/90 mmHg
in the resting state during physical examination or treatment with antihypertensive medi-
cation; type 2 diabetes mellitus was defined by self-reported diagnosis validated by the
respective treating physician and by current intake of glucose-lowering medication. In
addition, undiagnosed diabetes cases were identified through oral glucose tolerance test
based on ADA criteria. Cases with a diagnosis of dyslipidemia or hyperuricemia/gout were
defined by the current intake of lipid-lowering drugs or hyperuricemia/gout medication,
respectively. Similarly to our previous studies [8,15], we analyzed all metabolic diseases
individually, and as a combined outcome variable, “any metabolic diseases” (defined as
suffering from at least one of the four metabolic diseases: hypertension, type 2 diabetes,
dyslipidemia, and hyperuricemia/gout). Similarly, the diagnosis of myocardial infarction
or stroke was defined on the basis of self-reports, and was further validated by means of
medical records such as hospital or general practitioners’ records. Both myocardial infarc-
tion and stroke were analyzed individually and summarized as a dichotomous variable,
“any cardiovascular diseases” (defined as suffering from at least one of two cardiovascular
diseases: myocardial infarction and/or stroke).

Prevalent cases were cases identified in the KORA F4 study, and incident cases were
defined as newly occurring cases after a follow-up of seven years in the KORA FF4 study
(in those participants who were not yet diagnosed with the respective disease in the KORA
F4 study).

2.5. Data Preprocessing

Among the 3080 participants in the F4 data, we excluded 61 participants, as 54 partici-
pants did not fast for at least 8 h before blood collection, and 7 participants had missing
information regarding fasting glucose levels. Furthermore, we excluded 18 participants
who had more than 10% missing data for the above-mentioned parameters; utimately, there
were 3001 study participants in total. Among these, 2120 participated in both the F4 study
and the seven-year follow-up FF4 study (Figure 1). We imputed the remaining missing
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variables of the biomarkers using the multivariate imputation by chained equations ‘mice’
package version 3.8.0 in R [26], which generated five complete data sets with ten iterations
each. Subsequently, to avoid the biases of different scales and units, we z-standardized all
biochemical and anthropometric parameters before using these imputed and standardized
data for clustering purposes only.
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2.6. Descriptive Statistics

We reported the baseline characteristics, including socio-demographic, lifestyle, and
health status, of the KORA F4 study population in total and stratified these by sex. Median
and interquartile range (IQR) were shown for continuous variables, and absolute frequency
and percentage for categorical variables. In order to analyze the differences in the distribu-
tions between sexes as well as metabotypes, we used the Kruskal–Wallis test for continuous
variables, and Pearson’s chi-square test for categorical variables. Additionally, we also
carried out respective post hoc tests with the Bonferroni correction to examine differences in
metabolic parameters between metabotype clusters. As there was missing information for
some participants, the maximum number of data available was used, leading to different
sample sizes; the exact numbers are provided in the footnotes of the tables.

2.7. Parameter Selection

In our previously published studies, we developed the metabotyping concept using a
comprehensive set of 32 [15] and 16 [27] widely available clinical parameters. However, in
this study, we optimized the metabotype concept by reducing the metabotyping param-
eters to a few relevant standard clinical parameters. As an initial step, we reduced the
16 parameters to 14 parameters by replacing three-biochemical parameters, TC, low-density
lipoprotein (LDL) cholesterol, and the TC/HDL ratio, with non-HDLc cholesterol, as recent
findings showed non-HDLc to have high prognostic value [28–31].
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In order to investigate the contribution of individual variables to metabotyping, vari-
able importance analysis was performed using a machine learning-based method, begin-
ning with the 14 parameters. We applied a commonly used feature selection method for
biomarker discovery [32–34] called permutation variable importance (PVI) [35]. It was
implemented using the R function “PIMP” (algorithm for the permutation variable im-
portance measure) [36]. In this method, variable importance is calculated with the help
of the variable importance measure of the random forest (RF) algorithm [37]. Initially, an
RF model is trained on the original data set. Then, variable importance of each variable is
calculated using a decrease in Gini impurity, which is the likelihood of falsely identifying
the occurrence of a random variable (for details see [37]). Then, the outcome variable is
randomly permuted a fixed number of times. For each permutation of the outcome variable,
the variable importance for each predictor variable is calculated, which is referred to as
“null importance”. Then, a probability distribution (selected using Kolmogorov–Smirnov
tests) is fitted to the null importances. The fitted distribution is then used to derive p-values
of true importance from the null importances. In this study, we obtained the variable
importance by creating 500 trees with all 14 parameters included, and derived the p-value
of the predictors by randomly permuting the outcome variables 100 times, as described in
detail by Altman et al. [35].

As a sensitivity analysis and to validate the results of the PVI method, we applied
two other methods to examine variable importance. First, we used the cross-validated
permutation variable importance measure (CVPVI), which is an average of all k-fold cross-
validated permutation importances [38]. In this method, data sets are divided into k equal
folds; for each fold, an RF model is trained. The prediction error from each tree in the
RF model is calculated. The same is repeated after permuting each predictor variable.
The difference between the two prediction errors is calculated and averaged over all trees.
Finally, the differences from all k folds are averaged, and the final relevance of predictor
variables is assessed. We implemented this function in R using the “CVPVI” function from
the “Vita” package [39]. In our implementation, we carried out 10-fold cross-validation,
and created 1000 trees in each fold. The predictor variables were permuted 100 times.
For the second method, we performed gradient-boosted feature selection [40]. Gradient
boosting is a boosted tree-based supervised learning algorithm [41]. In this method, variable
importance is calculated using the fractional contribution each variable provides to the
model, based on the total gain of the variable’s splits. These importance scores are then
averaged across all decision trees within the model [41,42]. For this task, we used the R
package “xgboost” [43].

Based on the top 50% of contributing variables in all methods, as well as their avail-
ability in general primary care, we selected a subset of 7 out of the 14 variables.

2.8. Metabotyping

Similarly to previous studies [5,15,19,27], we identified metabolically homogenous
subgroups (metabotypes) by performing a clustering method called k-means clustering
algorithm. Likewise, in order to identify the appropriate number of clusters for the k-means
algorithm, we used a statistical function in R called “NbClust” which provides 30 indices
for determining the optimal number of clusters [44]. We used the clustering algorithm
in all five imputed data sets via the R package “miclust” (multiple imputation in cluster
analysis), version 1.2.5 [45].

We used the seven identified parameters (namely TG, BMI, uric acid, fasting glucose,
insulin, HDLc, and Non-HDLc) to derive metabotypes for KORA F4 participants. We
created several random unique combinations of parameters and computed cluster analyses
in each combination, which resulted in different metabotype models. The models with at
least 5% or 150 participants in the smallest cluster were regarded as acceptable metabotype
models, and were included in this study. In the majority of the models, a three-cluster
solution was the best option, followed by two clusters; all other options were ranked low.
Similar results were obtained in our previous studies, where three clusters were identified
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as an appropriate number of clusters [8,15,46]. Therefore, to make the models consistent
and comparable, we derived a three-cluster solution in all models.

In each model, we termed cluster 1 as the cluster with the metabolically most favor-
able clustering biochemical parameters (“healthy metabotype”), in contrast with clus-
ter 3 which was characterized by the metabolically least favorable clustering param-
eters (“unfavorable metabotype”). Cluster 2 was termed as the intermediate cluster,
where the clustering biochemical parameters were in between those of clusters 1 and
3 (“intermediate metabotype”).

The incidence of cardiometabolic disease in KORA FF4 data was used to identify
the most appropriate metabotype models that were identified in KORA F4 participants.
However, the diseases were not included in the metabotyping process. We ranked the
models based on the highest incidence of all metabolic diseases and cardiovascular diseases
in cluster 3. The model with the highest rank for “any metabolic disease” was regarded
as the best model for metabolic disease, and the model with the highest rank for “any
cardiovascular disease” was regarded as the best model for cardiovascular disease. These
models were further evaluated on the basis of various metabolic parameters.

We performed all statistical analyses for this study using the statistical software
R version 3.6.2 (R Development Core Team, 2010, http://www.r-project.org, (accessed
on 17 February 2020) and RStudio Version 1.1.423, which is an integrated development
environment (IDE) for R. All tests were two-tailed, and we considered a p-value < 0.05 to
be statistically significant.

3. Results

Table 1 describes the baseline characteristics of the study population, including both
demographic parameters and data on the prevalence of diseases identified in the KORA
F4 study, in total and stratified by gender. Among the total study population, 52% were
female and 48% were male, with a median age of 56 years (IQR = 22 years). The median
BMI was 27 kg/m2 (IQR = 5.9 kg/m2), and almost 55% of the total study population was
physically active. The prevalence of “any metabolic disease” and “any cardiovascular
disease” was 43.6% and 4.7%, respectively. Compared to men, women had a lower median
age and BMI, were more often never-smokers, consumed less alcohol, and showed a lower
prevalence of diseases. We observed similar differences between groups in the follow-up
study population (KORA FF4) as well (Table S1).

Table 1. Baseline characteristics of the KORA F4 study population.

Total Men Women p-Value
n = 3001 n = 1450 n = 1551

Socio-demographic characteristics
Age (years)

0.03Median (IQR) 56.0 (22.0) 57.0 (23.0) 55.0 (22.0)

Education

<0.001
<10 years 261 (8.7%) 58 (4.0%) 203 (13.1%)

10–<12 years 1499 (50.0%) 661 (45.6%) 838 (54.0%)
≥12 years 1236 (41.2%) 728 (50.2%) 508 (32.8%)
Missing 5 (0.2%) 3 (0.2%) 2 (0.1%)

BMI (kg/m2)

<0.001

Median (IQR) 27.0 (5.9) 27.3 (5.1) 26.3 (7.1)
Normal weight (18.5–<25) 941 (31.4%) 345(23.8%) 596 (38.4%)

Overweight (25–<30) 1253 (41.8%) 726(50.1%) 527 (34.0%)
Obese (≥30) 793 (26.4%) 375(25.9%) 418 (27.0%)

Missing 14 (0.5%) 4 (0.3%) 10 (0.6%)

http://www.r-project.org


Life 2022, 12, 1460 7 of 18

Table 1. Cont.

Total Men Women p-Value
n = 3001 n = 1450 n = 1551

Physical Activity

0.409
Active 1641 (54.7%) 780 (53.8%) 861 (55.5%)

Inactive 1356 (45.2%) 666 (45.9%) 690 (44.5%)
Missing 4 (0.1%) 4 (0.3%) 0 (0.0%)

Smoking

<0.001
Smoker 524 (17.5%) 281 (19.4%) 243 (15.7%)

Ex-Smoker 1218 (40.6%) 715 (49.3%) 503 (32.4%)
Never-Smoker 1254 (41.8%) 450 (31.0%) 804 (51.8%)

Missing 5 (0.2%) 4 (0.3%) 1 (0.1%)

Alcohol consumption

<0.001

≥40 g/day 336 (11.2%) 290 (20.0%) 46 (3.0%)
20–<40 g/day 540 (18.0%) 351 (24.2%) 189 (12.2%)
0–<20 g/day 1221 (40.7%) 508 (35.0%) 713 (46.0%)

0 g/day 900 (30.0%) 297 (20.5%) 603 (38.9%)
Missing 4 (0.1%) 4 (0.3%) 0 (0.0%)

Prevalence of disease n (%)

Type 2 diabetes mellitus 242 (8.1%) 144 (9.9%) 98 (6.3%) <0.001

Hypertension 1150 (38.3%) 639 (44.1%) 511 (32.9%)
<0.001Missing 7 (0.2%) 4 (0.3%) 3 (0.2%)

Hyperuricemia 113 (3.8%) 90 (6.2%) 23 (1.5%)
<0.001Missing 2 (0.1%) 2 (0.1%) 0 (0.0%)

Dyslipidemia 386 (12.9%) 219 (15.1%) 167 (10.8%)
<0.001Missing 3 (0.1%) 3 (0.2%) 0 (0.0%)

Any metabolic disease 1309 (43.6%) 730 (50.3%) 579 (37.3%)
<0.001Missing 8 (0.3%) 4 (0.3%) 3 (0.2%)

Stroke 71 (2.4%) 46 (3.2%) 25 (1.6%) 0.007

Myocardial infarction 79 (2.6%) 62 (4.3%) 17 (1.1%) <0.001

Any cardiovascular disease 142 (4.7%) 100 (6.9%) 42 (2.7%) <0.001

Median (IQR) for continuous variables and n (column %) for categorical variables. p-values are from the Kruskal–
Wallis test for continuous variables, and from Pearson’s chi-squared test for categorical variables. Prevalence:
due to missing information, there were reduced data sets for hypertension n = 2994, hyperuricemia n = 2999,
dyslipidemia n = 2998, and “any metabolic disease” n = 2993. KORA, Cooperative Health Research in the Region
of Augsburg.

Figure 2 presents the variable importance of the grouping parameters included in the
14-parameter model. All three methods showed similar results. The seven most important
parameters out of fourteen were TG, uric acid, BMI, HDLc, glucose, insulin, and non-
HDLc. According to the PVI method, all seven selected parameters had a significant effect.
TG was identified as the most important variable in all methods, whereas uric acid was
identified as the second most important parameter in two (PVI and CVPVI) methods.
Next, BMI, HDLc, and glucose were identified as the third, or either fourth, or fifth most
important parameters, respectively, which was followed by insulin. Non-HDLc was also
identified as either the sixth or the eighth most important variable. Except for insulin, all
identified parameters were labeled a priori as standard laboratory parameters. Therefore,
insulin was not included any further in our models. The variable importance carried
out on the comprehensive set of 29 parameters also showed similar results (Figure S1).
Following parameter selection, we explored unique combinations of the seven selected
parameters that resulted in 18 different metabotype models. All models were described on
the basis of the cumulative incidence of diseases in the most unfavorable cluster (cluster 3).
Compared to the model with 14 parameters, all 18 models based on the selected parameters
resulted in comparatively higher incidences of both metabolic and cardiovascular disease
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in participants of cluster 3 (Table S2). Among all models, cluster 3 of model 7 showed the
highest incidence (62%) of “any metabolic disease”, whereas cluster 3 of model 17 revealed
the highest incidence of “any cardiovascular disease” (9.1%) (Table S2). As a result, these
two models were selected for further exploration.
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Table 2 shows the distribution of socio-demographic variables across all three clusters
for the best models, models 7 and 17. In model 7, about 40% (n = 1189) of participants were
assigned to cluster 1, 48% (n = 1140) to cluster 2, and 12% (n = 372) to cluster 3. Meanwhile,
in model 17, 42% (n = 1253) were assigned to cluster 1, 49% (n = 1467) to cluster 2, and
9% (n = 281) to cluster 3. In both models, a high proportion of men (60% to 70%) were in
cluster 3, whereas a high proportion of women (~70%) were in cluster 1. In both models,
cluster 3 had the highest median age (65 years and 64 years, respectively) and median BMI
(33.2 and 30.5 kg/m2, respectively). Similarly, almost 60% of the participants in cluster
3 were physically inactive. Moreover, participants in cluster 3 were more often heavy
drinkers (more than 40 g/day). Compared to cluster 3, cluster 2 and cluster 1 included a
higher number of never-smokers and participants with higher education levels.

Table 3 displays the distributions of clinical parameters across the different clusters
in the two selected metabotype models. All five clustering parameters in model 7 were
significantly different across clusters. Moreover, in both models, other biochemical pa-
rameters that were not included in the metabotyping process, such as GGT, GOT, GPT,
HbA1c, hs-CRP, AP, insulin, and leukocyte count, also showed significant differences across
clusters, with the most unfavorable values in cluster 3.
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Table 2. Characteristics of the study population across the three clusters in model 7 and model 17,
KORA F4 study.

Total
Metabotype p-Value

Cluster 1 Cluster 2 Cluster 3

Model 7 n = 3001 n = 1189 n = 1440 n = 372

Age
56.0 (22.0) 51.0 (20.0) 57.0 (22.0) 65.0 (15.0) <0.001Median (IQR)

Sex
<0.001Male 1450 (48.3%) 282 (23.7%) 942 (65.4%) 226 (60.8%)

Female 1551 (51.7%) 907 (76.3%) 498 (34.6%) 146 (39.2%)

Education

<0.001
<10 years 261 (8.7%) 86 (7.2%) 124 (8.6%) 51 (13.7%)

10–<12 years 1499 (50.0%) 584 (49.2%) 721 (50.1%) 194 (52.2%)
≥12 years 1236 (41.3%) 516 (43.5%) 593 (41.2%) 127 (34.1%)

BMI

<0.001
<0.001

Median (IQR) 27.0 (5.9) 24.2 (3.9) 28.2 (4.6) 33.2 (6.5)
Normal weight (18.5–<25) 941 (31.5%) 723 (61.2%) 205 (14.3%) 13 (3.5%)

Overweight (25–<30) 1253 (41.9%) 387 (32.8%) 793 (55.2%) 73 (19.8%)
Obese (≥30) 793 (26.5%) 71 (6.0%) 439 (30.5%) 283 (76.7%)

Physical Activity
<0.001Active 1641 (54.8%) 719 (60.5%) 767 (53.4%) 155 (41.7%)

Inactive 1356 (45.2%) 469 (39.5%) 670 (46.6%) 217 (58.3%)

Smoking

<0.001
Smoker 524 (17.5%) 210 (17.7%) 282 (19.6%) 32 (8.6%)

Ex-smoker 1218 (40.7%) 419 (35.3%) 594 (41.3%) 205 (55.1%)
Never smoker 1254 (41.9%) 558 (47.0%) 561 (39.0%) 135 (36.3%)

Alcohol consumption

<0.001
≥40 g/day 336 (11.2%) 97 (8.2%) 181 (12.6%) 58 (15.6%)

20–<40 g/day 540 (18.0%) 211 (17.8%) 273 (19.0%) 56 (15.1%)
0–<20 g/day 1221 (40.7%) 534 (44.9%) 561 (39.0%) 126 (33.9%)

0 g/day 900 (30.0%) 346 (29.1%) 422 (29.4%) 132 (35.5%)

Model 17 n = 3001 n = 1253 n = 1476 n = 281

Age
<0.001Median (IQR) 56.0 (22.0) 52.0 (22.0) 57.0 (21.0) 64.0 (16.0)

Sex
<0.001Male 1450 (48.3%) 384 (30.6%) 868 (59.2%) 198 (70.5%)

Female 1551 (51.7%) 869 (69.4%) 599 (40.8%) 83 (29.5%)

Education

0.024
<10 years 261 (8.7%) 99 (7.9%) 132 (9.0%) 30 (10.7%)

10–<12 years 1499 (50.0%) 620 (49.6%) 719 (49.1%) 160 (56.9%)
≥12 years 1236 (41.3%) 532 (42.5%) 613 (41.9%) 91 (32.4%)

BMI

<0.001
<0.001

Median (IQR) 27.0 (5.9) 25.0 (5.3) 28.0 (5.2) 30.5 (5.9)
Normal weight (18.5–<25) 941 (31.5%) 632 (50.6%) 287 (19.7%) 22 (7.9%)

Overweight (25–<30) 1253 (41.9%) 437 (35.0%) 716 (49.0%) 100 (36.0%)
Obese (≥30) 793 (26.5%) 180 (14.4%) 457 (31.3%) 156 (56.1%)

Physical Activity
<0.001Active 1641 (54.8%) 763 (61.0%) 763 (52.1%) 115 (40.9%)

Inactive 1356 (45.2%) 488 (39.0%) 702 (47.9%) 166 (59.1%)
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Table 2. Cont.

Total
Metabotype p-Value

Cluster 1 Cluster 2 Cluster 3

Smoking

<0.001
Smoker 524 (17.5%) 195 (15.6%) 277 (18.9%) 52 (18.5%)

Ex-smoker 1218 (40.7%) 476 (38.1%) 604 (41.2%) 138 (49.1%)
Never smoker 1254 (41.9%) 579 (46.3%) 584 (39.9%) 91 (32.4%)

Alcohol consumption

<0.001
≥40 g/day 336 (11.2%) 128 (10.2%) 155 (10.6%) 53 (18.9%)

20–<40 g/day 540 (18.0%) 212 (16.9%) 282 (19.2%) 46 (16.4%)
0–<20 g/day 1221 (40.7%) 568 (45.4%) 560 (38.2%) 93 (33.1%)

0 g/day 900 (30.0%) 343 (27.4%) 468 (31.9%) 89 (31.7%)

Median (IQR) for continuous variables and n (column %) for categorical variables, NA excluded. p-values
are from the Kruskal–Wallis test for continuous variables and from Pearson’s chi-squared test for categorical
variables. Model 7 included 5 parameters (glucose, BMI, uric acid, HDLc, and non-HDLc), and Model 17
included 4 parameters (glucose, triglyceride, HDLc, and non-HDLc), and BMI body mass index. Due to missing
information, there were reduced data sets for education n = 2996, BMI n = 2987, physical activity n = 2997, smoking
n = 2996, and alcohol consumption n = 2997. The highest values across the clusters are marked in bold. KORA,
Cooperative Health Research in the Region of Augsburg. KORA, Cooperative Health Research in the Region
of Augsburg.

Table 3. Comparison of the clustering parameters and other metabolic parameters across the three
clusters of two selected clustering models (7 and 17), KORA F4 study.

Total
Metabotype p-Value

Cluster 1 Cluster 2 Cluster 3

Model 7 n = 3001 n = 1189 n = 1440 n = 372

Parameters used for metabotyping
BMI [kg/m2] 26.90 (5.93) 24.19 (4.31) a 28.24 (4.85) b 33.17 (6.47) c <0.001

Uric acid [µmol/L] 299.41 (114.12) 243.52 (79.29) a 334.12 (93.88) b 375.29 (113.76) c <0.001
Glucose [mg/dL] 94.00 (14.00) 89.00 (10.80) a 96.00 (12.40) b 122.00 (28.40) c <0.001
HDLc [mmol/L] 1.39 (0.52) 1.70 (0.45) a 1.26 (0.37) b 1.18 (0.39) c <0.001

Non-HDLc [mmol/L] 4.05 (1.32) 3.59 (1.21) a 4.49 (1.28) b 4.01(1.25) c <0.001

Other Parameters
TG [mmol/L] 1.19 (0.90) 0.82 (0.56) a 1.46 (0.87) b 1.76 (1.22) c <0.001
AP [µmol/L] 1.10 (0.42) 1.00 (0.43) a 1.14 (0.39) b 1.21 (0.43) c <0.001
GPT [µkat/L] 0.35 (0.23) 0.28 (0.16) a 0.40 (0.24) b 0.48 (0.32) c <0.001
GOT [µkat/L] 0.41 (0.14) 0.38 (0.12) a 0.43 (0.14) b 0.45 (0.19) c <0.001
GGT [µkat/L] 0.43 (0.4) 0.31 (0.26) a 0.50 (0.42) b 0.63 (0.53) c <0.001

HbA1c [%] 5.50 (0.5) 5.30 (0.42) a 5.50 (0.5) b 6.10 (0.98) c <0.001
hs-CRP [mg/L] 1.18 (2.03) 0.76 (1.38) a 1.38 (2.08) b 2.49 (3.27) c <0.001

Leukocytes (n/L) 5.70 (2) 5.30 (1.84) a 5.90 (1.93) b 6.30 (2) c <0.001
Insulin [µU/mL] 8.80 (6.70) 6.60 (4.14) a 10.00 (6.46) b 18.00 (11.74) c <0.001

Model 17 n = 3001 n = 1253 n = 1467 n = 281

Parameters used for metabotyping
TG [mmol/L] 1.19 (0.90) 1.18 (0.90) a 1.47 (0.78) b 2.71 (1.74) c <0.001

Glucose [mg/dL] 94.00 (14.00) 90.00 (11.60) a 96.00 (13.20) b 124.00 (38.00) c <0.001
HDLc [mmol/L] 1.39 (0.52) 1.70 (0.45) a 1.24 (0.37) b 1.08 (0.35) c <0.001

Non-HDLc [mmol/L] 4.05 (1.32) 3.48 (1.05) a 4.49 (1.19) b 4.49 (1.27) b <0.001

Other Parameters
BMI [kg/m2] 26.99 (5.93) 24.95 (5.42) a 27.95 (5.35) b 30.54 (5.93) c <0.001

Uric acid [µmol/L] 299.41 (114.12) 260.5 (96.70) a 321.17 (107.05) b 378.23 (117.8) c <0.001
AP [µmol/L] 1.10 (0.42) 1.01 (0.42) a 1.15 (0.41) b 1.20 (0.44)b <0.001
GPT [µkat/L] 0.35 (0.23) 0.30 (0.18) a 0.39 (0.24) b 0.48 (0.31) c <0.001
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Table 3. Cont.

Total
Metabotype p-Value

Cluster 1 Cluster 2 Cluster 3

GOT [µkat/L] 0.41 (0.14) 0.39 (0.13) a 0.42 (0.15) b 0.45 (0.19) c <0.001
GGT [µkat/L] 0.43 (0.40) 0.34 (0.28) a 0.48 (0.42) b 0.71 (0.59) c <0.001

HbA1c [%] 5.50 (0.50) 5.40 (0.50) a 5.50 (0.50) b 6.20 (1.22) c <0.001
hs-CRP [mg/L] 1.18 (2.03) 0.86 (1.55) a 1.39 (2.23) b 1.97 (2.57) <0.001

Leukocytes (n/L) 5.70 (2.00) 5.40 (1.84) a 5.90 (2.00) b 6.40 (2.16) <0.001
Insulin [µU/mL] 8.80 (6.70) 6.90 (4.62) a 10.00 (6.54) b 17.00 (10.94) <0.001

Median and interquartile range (IQR) were calculated through the mean of median and IQR in all five imputed
data sets. p-values are from the Kruskal–Wallis test. Different superscript letters represent a significant difference
between clusters obtained from the Kruskal–Wallis post hoc test with Bonferroni correction. The highest median
values across the three clusters are marked in bold. BMI: body mass index; HDLc: high-density lipoprotein;
TG: triglyceride; GGT: gamma-glutamyltransferase; GOT: glutamate-oxaloacetate transaminase; GPT: glutamate-
pyruvate transaminase; HbA1c: glycated hemoglobin, hs-CRP: high-sensitive C-reactive protein, AP; alkaline
phosphatase. KORA, Cooperative Health Research in the Region of Augsburg.

Table 4 presents the prevalence and incidence of metabolic and cardiovascular diseases
of study participants in the three clusters of models 7 and 17, respectively. Regarding
the incidence of individual metabolic and cardiovascular diseases in both models, we
obtained significant differences across clusters, except for hypertension. Compared to
cluster 1 and cluster 2, participants in cluster 3 of both models (models 7 and 17) showed
the highest incidence of all metabolic and cardiovascular diseases. This holds for “any
metabolic disease” (model 7 (13% vs. 23.7% vs. 62%), model 17 (13.5% vs. 25.3% vs.
58.4%)) and “any cardiovascular disease” (model 7 (1.4% vs. 3.4% vs. 7.4%), model 17
(1.5% vs. 3.3% vs. 9.1%)).

Table 4. Prevalence and incidence of diseases across the three clusters of two selected clustering
models (7 and 17), KORA F4 and FF4 studies.

Total
Metabotype p-Value

Cluster 1 Cluster 2 Cluster 3

Model 7
n = 3001 n = 1189 n = 1440 n = 372

Prevalence of disease in KORA F4; n (%)

Type 2 diabetes 242 (8.06%) 15 (1.26%) 52 (3.6%) 175 (47.0%) <0.001
Hypertension 1150 (38.4%) 249 (21.0%) 616 (42.9%) 285 (76.6%) <0.001

Hyperuricemia 113 (3.8%) 15 (1.3%) 58 (4.0%) 40 (10.8%) <0.001
Dyslipidemia 386 (12.9%) 101 (8.5%) 173 (12.0%) 112 (30.2%) <0.001

Any metabolic diseases 1309 (43.7%) 299 (25.2%) 684 (47.6%) 326 (87.9%) <0.001
Stroke 71 (2.4%) 19 (1.6%) 32 (2.2%) 20 (5.4%) <0.001

Myocardial infraction 79 (2.6%) 12 (1.0%) 38 (2.6%) 29 (7.8%) <0.001
Any cardiovascular disease 142 (4.7%) 27 (2.3%) 68 (4.7%) 47 (12.6%) <0.001

Incidence of disease in KORA FF4; n (%) n = 2120 n = 895 n = 1003 n = 222
Type 2 diabetes 94 (4.7%) 13 (1.5%) 43 (4.4%) 38 (30.2%) <0.001
Hypertension 230 (10.9%) 86 (9.6%) 114 (11.4%) 30 (13.6%) 0.187

Hyperuricemia 45 (2.1%) 0 (0.0%) 24 (2.4%) 21 (9.5%) <0.001
Dyslipidemia 157 (7.4%) 27 (3.0%) 92 (9.2%) 38 (17.2%) <0.001

Any metabolic diseases 442 (21.9%) 114 (13.0%) 233 (23.7%) 95 (62.0%) <0.001
Stroke 35 (1.7%) 10 (1.1%) 15 (1.5%) 10 (4.6%) 0.001

Myocardial infraction 27 (1.3%) 2 (0.2%) 20 (2.0%) 5 (2.4%) <0.001
Any cardiovascular disease 60 (2.9%) 12 (1.4%) 33 (3.4%) 15 (7.4%) <0.001
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Table 4. Cont.

Total
Metabotype p-Value

Cluster 1 Cluster 2 Cluster 3

Model 17
n = 3001 n = 1235 n = 1467 n = 281Prevalence of disease in KORA F4; n (%)

Type 2 diabetes 242 (8.1%) 39 (3.1%) 67 (4.6%) 136 (48.4%) <0.001
Hypertension 1150 (38.4%) 332 (26.6%) 620 (42.4%) 198 (70.5%) <0.001

Hyperuricemia 113 (3.8%) 22 (1.8%) 53 (3.6%) 38 (13.6%) <0.001
Dyslipidemia 386 (12.9%) 140 (11.2%) 168 (11.5%) 78 (27.9%) <0.001

Any metabolic diseases 1309 (43.7%) 385 (31.0%) 694 (47.4%) 230 (82.1%) <0.001
Stroke 71 (2.4%) 26 (2.1%) 35 (2.4%) 10 (3.6%) 0.334

Myocardial infraction 79 (2.6%) 24 (1.9%) 37 (2.5%) 18 (6.4%) <0.001
Any cardiovascular disease 142 (4.7%) 46 (3.6%) 70 (4.8%) 26 (9.2%) <0.001

Incidence of disease in KORA FF4; n (%) n = 2120 n = 916 n = 1040 n = 164
Type 2 diabetes 94 (4.7%) 15 (1.7%) 54 (5.4%) 25 (26.9%) <0.001
Hypertension 230 (10.9%) 85 (9.3%) 125 (12.0%) 20 (12.3%) 0.127

Hyperuricemia 45 (2.1%) 9 (0.1%) 29 (2.8%) 7 (4.3%) 0.002
Dyslipidemia 157 (7.4%) 30 (3.3%) 92 (8.8%) 35 (21.5%) <0.001

Any metabolic diseases 442 (21.9%) 120 (13.5%) 256 (25.3%) 66 (58.4%) <0.001
Stroke 35 (1.7%) 11 (1.2%) 14 (1.4%) 10 (6.2%) <0.001

Myocardial infraction 27 (1.3%) 2 (0.2%) 21 (2.0%) 4 (2.6%) <0.001
Any cardiovascular disease 60 (2.9%) 13 (1.5%) 33 (3.3%) 14 (9.1%) <0.001

n (column%), NA excluded. p-values from Pearson’s chi-squared test (Fisher’s exact test for low frequen-
cies). Model 7 included 5 parameters (glucose, BMI, uric acid, HDLc, and non-HDLc), and Model 17 included
4 parameters (glucose, triglyceride, HDLc, and non-HDLc). Prevalence: due to missing information, there were
reduced data sets for hypertension n = 2994, hyperuricemia n = 2999, dyslipidemia n = 2998, and “any metabolic
disease” n = 2993. Incidence: due to missing information, there were reduced data sets for type 2 diabetes
n = 1988, hypertension n = 2115, hyperuricemia n = 2117, dyslipidemia n = 2117, “any metabolic disease” n = 2017,
stroke n = 2091, myocardial infraction n = 2076, and “any cardiovascular disease” n = 2055. The highest prevalence
and incidence of diseases across three different clusters are marked in bold. KORA, Cooperative Health Research
in the Region of Augsburg.

4. Discussion

We further improved the metabotyping concept in the population-based KORA
F4/FF4 study by using a few routinely measured clinical parameters (namely TG, BMI,
uric acid, fasting glucose, HDLc, and non-HDLc) that were identified through the PVI
method. By computing a k-means cluster analysis, we identified three-cluster solutions and
described them on the basis of metabolic parameters and disease occurrence. We selected
two models as the most appropriate solutions.

To the best of our knowledge, this is the first study to assess the importance of parame-
ters for metabotypes, using the PVI method to select them. We further reinforced the results
from PVI using two additional variable importance methods (i) CVPVI and (ii) gradient-
boosted feature selection. The similar results from these two additional methods validated
the results from the PVI method. Furthermore, we created multiple unique subsets of
the selected parameters to create 18 different metabotype models, in contrast to using
just the initially selected parameters. In accordance with our earlier studies [15,27] and
also with other similar papers [5,16,47–51], we used the unsupervised method of k-means
clustering for metabotyping, resulting in metabotype models that were independent of
disease. Two models out of eighteen were chosen, based on the incidence of disease in the
7-year follow-up KORA FF4 study, and were further analyzed.

Metabotype model 7 was described as the metabotype model with the highest inci-
dence of metabolic diseases in the unfavorable cluster 3, and was based on five parameters
(glucose, BMI, uric acid, HDLc, and non-HDLc); meanwhile, cluster 3 of model 17 showed
the highest incidence of cardiovascular diseases, and included four parameters (TG, glucose,
HDLc, and non-HDLc). Both models 7 and 17 were evaluated using an additional set of
biochemical parameters that were not included in identifying the metabotype groups. The
concentrations of the biochemical parameters across the three clusters of both models were
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consistently and significantly different, showing the unique metabolic characteristics of
each cluster. This validated our identification of distinct metabotype subgroups (clusters).

The differences regarding the prevalence and incidence of diseases between clusters
in both models were statistically significant, except for the incidence of hypertension.
Although the incidence of hypertension was higher in cluster 3, it did not reach statistical
significance in either model 7 or 17 (p = 0.18 and p = 0.12, respectively). However, there
was a significant difference in the prevalence of hypertension across all three clusters in
both models. This may have been due to the high prevalence of hypertension (more than
70%) among participants in cluster 3. Another explanation could also be that there may
have been participation bias in the KORA FF4 study, as those who did not participate in the
follow-up study were less healthy [52]. Regarding the socio-demographic characteristics,
participants in cluster 3 were more likely to have received less than 10 years of education,
had a higher median age, a higher BMI, were more physically inactive, and were more
often heavy drinkers compared to participants in cluster 2 and cluster 1. Additionally,
cluster 3 included the lowest number of current smokers compared to other clusters,
but the highest number of ex-smokers and non-drinkers, which likely reflects behavioral
changes in response to worsening health status. Thus, these clear differences in risk
factors and occurrence of diseases across clusters show that the identified metabotypes
represent specific characteristics where the clusters can be meaningfully classified into
healthy, intermediate, and unfavorable clusters. Thus, the identified metabotypes can be
used as a tool to stratify populations according to their metabolic features. However, the
intention of the present research was not to create a risk prediction model; rather, it aimed
to define metabolically homogenous subgroups in the population.

We previously used the metabotyping concept to investigate associations between diet
and type-2 diabetes (T2D), and identified different associations by metabotype subgroups [27].
T2D risk increased in the healthy subgroup with a higher intake of total meat and pro-
cessed meat, while in the unhealthy subgroup T2D risk was positively associated with
consumption of sugar-sweetened beverages, and inversely associated with fruit intake.
We also found significant associations between dietary patterns and T2D in the total
population; however, when stratified by the metabotype subgroups, a significant asso-
ciation was only seen in the unhealthy metabotype subgroup [46]. Likewise, in studies
by Fiamoncini et al. [53] and O’Sullivan et al. [48], the effect of dietary intervention was
only evident after dividing the population into metabolic phenotypes. Similarly, in our
recent publication, we successfully applied the metabotypes that were developed in this
manuscript in a different study population where participants in different metabotype
subgroups showed significantly differential reactions to the oral glucose tolerance test
(OGTT) [54]. These studies clearly demonstrate that metabotyping can be used to identify
a metabolically similar high-risk subgroup that can benefit from targeted dietary advice
and lifestyle intervention.

O’donovan et al. [5] and Hillesheim et al. [19] used decision tree methods in their
studies to develop targeted dietary advice for specific metabolic subgroups. When the
dietary advice from the decision tree was compared to the individual-based approach that
was delivered by a dietitian, they found that the advice matched in more than 80% of the
study population. Similar results were seen in the Food4Me study [55], where decision trees
were used to provide personalized dietary advice to adults in seven European countries.
Providing dietary advice at the individual level is the epitome of personalized nutrition;
however, this approach is costly, and involves extensive data collection [19]. On the other
had, the metabotype approach provides a simpler and more feasible approach [12]. These
results show that using metabotypes can be a promising tool in the field of personalized
nutrition. Furthermore, this approach can also help clinicians provide dietary recommenda-
tions quickly [5,19] by overcoming the usual barriers such as lack of time, heavy workloads,
and inadequate training [56,57].

Several studies have implemented both small and large (n > 50) sets of anthro-
pometric and biochemical parameters, in order to identify metabolically similar
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groups [3,5,16,17,19,49,58–61]. Bouwman et al. [14] even included omics data and identi-
fied two distinct subgroups to study visualization and identification of health space. As
omics data may provide a more comprehensive outlook, we also investigated the inclusion
of omics as well as genetics data for metabotyping in one of our previous studies [15].
However, the model did not perform better than the model with the extensive set of
32 biochemical and anthropometric parameters (details not published). A few other studies
have also identified metabotypes as a useful measure to identify subjects with a high risk
of cardiometabolic disease [48,50,54,62–64]. However, these studies did not include a wide
range of metabolic and cardiovascular diseases. Furthermore, previous studies were often
based on parameters that are not easily accessible in daily practice. For example, in a study
by Urpi-Sarda et al. [63], four different subgroups were identified on the basis of a urinary
metabolomics fingerprint associated with type-2 diabetes.

The two metabotype models identified in this study are based on a small number of
routinely used clinical parameters. We found a distinct difference across the clusters in
regard to metabolic parameters. Similarly, the distribution of disease was also different
between the subgroups; in addition, the unfavorable cluster 3 showed the highest percent-
age for both prevalence and incidence of diseases in both models. These consistent results
show that our clustering model successfully identified valid metabotypes, which have
the advantage of being simpler yet no less valid than previously identified metabotype
models [8,15,27]. Moreover, the successful application of the metabotypes identified in this
study in a different study population further validates our metabotypes concept [54]. These
findings illustrate that identified metabotypes can be easily applied at a population level,
as well as in general research settings and primary care, to detect metabolically similar
subgroups. Furthermore, they may also help to develop new, targeted, and precise dietary
recommendations based on their different metabolic features.

The present study was conducted in a large population-based cohort, which makes
the finding of our study generalizable to the adult German population. The use of a
few readily available parameters to define valid metabotypes makes the findings of this
study simple, cost-effective, and instantly applicable on a large scale, if replicated in other
cohorts. We were also able to consider subjects with previously unknown or undiagnosed
type 2 diabetes by using an oral glucose tolerance test at baseline and follow-up, which
could have otherwise remained undetected. Another strength of this study is that the
incidence data on self-reported diseases such as myocardial infarction, stroke, and type
2 diabetes were validated by means of medical records. However, there may have been
an underestimation of the prevalence and incidence of dyslipidemia and hyperuricemia,
as they were defined only on the bases of reported intake of lipid-lowering drugs and
hyperuricemia/gout medication. Additionally, we lost many participants in the follow-up
KORA FF4 study, which may have biased our results [52]. The highest dropout rate of
participants in cluster 3 may also have underestimated the disease incidence in this cluster.

In conclusion, we successfully identified two valid and practical metabotype solutions
based on a minimal number of routinely measured clinical parameters that are generally
available in research settings and primary care. Thus, the identified metabotypes can easily
be applied to the general population for the purposes of identifying individuals who could
benefit from receiving additional preventive measures targeted to metabolic derangements,
such as dietary recommendations and lifestyle modifications. The replication of identified
metabotypes in a different cohort could further aid in the development of a simple and
consistent metabotype definition.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life12101460/s1, Table S1: Characteristics of the KORA FF4 study
population; Table S2: Incidence of diseases in the unfavorable metabotype clusters identified in
different clustering models based on combinations of seven parameters, versus the 14-parameter
clustering model, KORA FF4 study; Figure S1: Variable importance of the 29 clustering parameters
using the permutation variable importance (A), cross-validated permutation variable Importance (B),
and gradient-boosted feature selection method (C).
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