1,984 research outputs found

    Neutrophil Oxygen Radical Production by Dialysis Membranes

    Get PDF
    The ability of different dialysis membranes to activate polymorphonuclear neutrophil oxygen radical production was investigated with chemiluminescence. All the six membranes, namely cuprophan, cellulose acetate, polycarbonate, polysulphone, polyacrilonitrile and polymethylmethacrylate were able to interact with neutrophils and stimulate their oxygen radical production, the highest responses being seen with polyacrilonitrile, polymethylmethacrylate and polycarbonate. To analyse the role of complement in this interaction, fresh plasma, heat inactivated and zymosan-activated plasma were added: with fresh plasma oxygen radical production was stimulated on cuprophan, cellulose acetate and polysulphone, not modified on polycarbonate, and decreased on polyacrilonitrile and polymethylmethacrylate. With heat-inactivated plasma, the responses were decreased or abrogated on all the membranes except polycarbonate and polymethylmethacrylate, whereas with zymosanactivated plasma similar responses to fresh plasma were observed. In addition, when plasma was used to precoat the membrane, cuprophan, cellulose acetate and polysulphone disclosed an enhanced neutrophil oxidative burst, while precoated polyacrilonitrile and polymethylmethacrylate were less stimulatory than uncoated membranes. In contrast the precoating of polycarbonate did not modify oxygen radical production. These data suggest that neutrophil activation occurs by direct membrane neutrophil interaction. Plasmatic factors modulate this interaction but complement seems involved on cellulosic and polysulphone membranes only. Therefore, it appears that oxygen radicals produced from contact of neutrophils with the dialysis membrane might play an initial and/or additional role in the events occurring at the initiation of haemodialysi

    Performance of Geant4 in simulating semiconductor particle detector response in the energy range below 1 MeV

    Full text link
    Geant4 simulations play a crucial role in the analysis and interpretation of experiments providing low energy precision tests of the Standard Model. This paper focuses on the accuracy of the description of the electron processes in the energy range between 100 and 1000 keV. The effect of the different simulation parameters and multiple scattering models on the backscattering coefficients is investigated. Simulations of the response of HPGe and passivated implanted planar Si detectors to \beta{} particles are compared to experimental results. An overall good agreement is found between Geant4 simulations and experimental data

    Monte Carlo simulation of ICRF discharge initiation in ITER

    Get PDF
    Discharges produced and sustained by ion cyclotron range of frequency (ICRF) waves in absence of plasma current will be used on ITER for (ion cyclotron-) wall conditioning (ICWC). The here presented simulations aim at ensuring that the ITER ICRH& CD system can be safely employed for ICWC and at finding optimal parameters to initiate the plasma. The 1D Monte Carlo code RFdinity1D3V was developed to simulate ICRF discharge initiation. The code traces the electron motion along one toroidal magnetic field line, accelerated by the RF field in front of the ICRF antenna. Electron collisions in the calculations are handled by a Monte Carlo procedure taking into account their energies and the related electron collision cross sections for collisions with H-2, H-2(+) and H+. The code also includes Coulomb collisions between electrons and ions (e - e; e - H-2(+); e - H+). We study the electron multiplication rate as a function of the RF discharge parameters (i) antenna input power (0.1-5MW), and (ii) the neutral pressure (H-2) for two antenna phasing (monopole [0000]-phasing and small dipole [0 pi 0 pi]-phasing). Furthermore, we investigate the electron multiplication rate dependency on the distance from the antenna straps. This radial dependency results from the decreasing electric amplitude and field smoothening with increasing distance from the antenna straps. The numerical plasma breakdown definition used in the code corresponds to the moment when a critical electron density nec for the low hybrid resonance (omega = omega(LHR)) is reached. This numerical definition was previously found in qualitative agreement with experimental breakdown times obtained from the literature and from experiments on the ASDEX Upgrade and TEXTOR

    On the Mechanisms of Haemodialysis-induced Neutropenia: A Study with Five New and Re-used Membranes

    Get PDF
    A prospective study was undertaken in 12 haemodialysed patients successively treated on five new as well as re-used dialyser membranes, that is cuprophane, cellulose acetate, polysulphone, polycarbonate, and polyacrylonitrile. A significant reduction of neutrophils occurred with every membrane during their first use, which improved only with cuprophane upon re-use. Thrombocytopenia was noted only when neutropenia reached very low values. Monocyte reduction occurred on cuprophane, cellulose acetate and polycarbonate, but did not improve during second use. C3d accumulation paralleled the time course of neutropenia only with cuprophane and cellulose acetate. Plasma collected at the extreme of neutropenia induced aggregation of control and predialysis cells, but did not aggregate autologous dialysed neutrophils collected at 5 min. Our data indicate that the mechanism linking complement activation to neutropenia is probably triggered by more than one facto

    Precision measurements of the 60^{60}Co β\beta-asymmetry parameter in search for tensor currents in weak interactions

    Full text link
    The β\beta-asymmetry parameter A~\widetilde{A} for the Gamow-Teller decay of 60^{60}Co was measured by polarizing the radioactive nuclei with the brute force low-temperature nuclear-orientation method. The 60^{60}Co activity was cooled down to milliKelvin temperatures in a 3^3He-4^4He dilution refrigerator in an external 13 T magnetic field. The β\beta particles were observed by a 500 μm{\mu}m thick Si PIN diode operating at a temperature of about 10 K in a magnetic field of 0.6 T. Extensive GEANT4 Monte-Carlo simulations were performed to gain control over the systematic effects. Our result, A~=1.014(12)stat(16)syst\widetilde{A} = -1.014(12)_{stat}(16)_{syst}, is in agreement with the Standard-Model value of 0.987(9)-0.987(9), which includes recoil-order corrections that were addressed for the first time for this isotope. Further, it enables limits to be placed on possible tensor-type charged weak currents as well as other physics beyond the Standard Model

    Weak Interaction Studies with 6He

    Get PDF
    The 6He nucleus is an ideal candidate to study the weak interaction. To this end we have built a high-intensity source of 6He delivering ~10^10 atoms/s to experiments. Taking full advantage of that available intensity we have performed a high-precision measurement of the 6He half-life that directly probes the axial part of the nuclear Hamiltonian. Currently, we are preparing a measurement of the beta-neutrino angular correlation in 6He beta decay that will allow to search for new physics beyond the Standard Model in the form of tensor currents.Comment: 5 pages, 4 figures, proceedings for the Eleventh Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2012
    corecore