913 research outputs found
Mining and Analyzing the Italian Parliament: Party Structure and Evolution
The roll calls of the Italian Parliament in the XVI legislature are studied
by employing multidimensional scaling, hierarchical clustering, and network
analysis. In order to detect changes in voting behavior, the roll calls have
been divided in seven periods of six months each. All the methods employed
pointed out an increasing fragmentation of the political parties endorsing the
previous government that culminated in its downfall. By using the concept of
modularity at different resolution levels, we identify the community structure
of Parliament and its evolution in each of the considered time periods. The
analysis performed revealed as a valuable tool in detecting trends and drifts
of Parliamentarians. It showed its effectiveness at identifying political
parties and at providing insights on the temporal evolution of groups and their
cohesiveness, without having at disposal any knowledge about political
membership of Representatives.Comment: 27 pages, 14 figure
Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees
The spread of infectious diseases crucially depends on the pattern of
contacts among individuals. Knowledge of these patterns is thus essential to
inform models and computational efforts. Few empirical studies are however
available that provide estimates of the number and duration of contacts among
social groups. Moreover, their space and time resolution are limited, so that
data is not explicit at the person-to-person level, and the dynamical aspect of
the contacts is disregarded. Here, we want to assess the role of data-driven
dynamic contact patterns among individuals, and in particular of their temporal
aspects, in shaping the spread of a simulated epidemic in the population.
We consider high resolution data of face-to-face interactions between the
attendees of a conference, obtained from the deployment of an infrastructure
based on Radio Frequency Identification (RFID) devices that assess mutual
face-to-face proximity. The spread of epidemics along these interactions is
simulated through an SEIR model, using both the dynamical network of contacts
defined by the collected data, and two aggregated versions of such network, in
order to assess the role of the data temporal aspects.
We show that, on the timescales considered, an aggregated network taking into
account the daily duration of contacts is a good approximation to the full
resolution network, whereas a homogeneous representation which retains only the
topology of the contact network fails in reproducing the size of the epidemic.
These results have important implications in understanding the level of
detail needed to correctly inform computational models for the study and
management of real epidemics
Proteomics: in pursuit of effective traumatic brain injury therapeutics
Effective traumatic brain injury (TBI) therapeutics remain stubbornly elusive. Efforts in the field have been challenged by the heterogeneity of clinical TBI, with greater complexity among underlying molecular phenotypes than initially conceived. Future research must confront the multitude of factors comprising this heterogeneity, representing a big data challenge befitting the coming informatics age. Proteomics is poised to serve a central role in prescriptive therapeutic development, as it offers an efficient endpoint within which to assess post-TBI biochemistry. We examine rationale for multifactor TBI proteomic studies and the particular importance of temporal profiling in defining biochemical sequences and guiding therapeutic development. Lastly, we offer perspective on repurposing biofluid proteomics to develop theragnostic assays with which to prescribe, monitor and assess pharmaceutics for improved translation and outcome for TBI patients
Mapping structural diversity in networks sharing a given degree distribution and global clustering: Adaptive resolution grid search evolution with Diophantine equation-based mutations
Methods that generate networks sharing a given degree distribution and global clustering can induce changes in structural properties other than that controlled for. Diversity in structural properties, in turn, can affect the outcomes of dynamical processes operating on those networks. Since exhaustive sampling is not possible, we propose a novel evolutionary framework for mapping this structural diversity. The three main features of this framework are: (a) subgraph-based encoding of networks, (b) exact mutations based on solving systems of Diophantine equations, and (c) heuristic diversity-driven mechanism to drive resolution changes in the MapElite algorithm.We show that our framework can elicit networks with diversity in their higher-order structure and that this diversity affects the behaviour of the complex contagion model. Through a comparison with state of the art clustered network generation methods, we demonstrate that our approach can uncover a comparably diverse range of networks without needing computationally unfeasible mixing times. Further, we suggest that the subgraph-based encoding provides greater confidence in the diversity of higher-order network structure for low numbers of samples and is the basis for explaining our results with complex contagion model. We believe that this framework could be applied to other complex landscapes that cannot be practically mapped via exhaustive sampling
Systems Imaging of the Immune Synapse
Three-dimensional live cell imaging of the interaction of T cells with antigen presenting cells (APC) visualizes the subcellular distributions of signaling intermediates during T cell activation at thousands of resolved positions within a cell. These information-rich maps of local protein concentrations are a valuable resource in understanding T cell signaling. Here, we describe a protocol for the efficient acquisition of such imaging data and their computational processing to create four-dimensional maps of local concentrations. This protocol allows quantitative analysis of T cell signaling as it occurs inside live cells with resolution in time and space across thousands of cells
Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions
During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph
Gravitational waves from single neutron stars: an advanced detector era survey
With the doors beginning to swing open on the new gravitational wave
astronomy, this review provides an up-to-date survey of the most important
physical mechanisms that could lead to emission of potentially detectable
gravitational radiation from isolated and accreting neutron stars. In
particular we discuss the gravitational wave-driven instability and
asteroseismology formalism of the f- and r-modes, the different ways that a
neutron star could form and sustain a non-axisymmetric quadrupolar "mountain"
deformation, the excitation of oscillations during magnetar flares and the
possible gravitational wave signature of pulsar glitches. We focus on progress
made in the recent years in each topic, make a fresh assessment of the
gravitational wave detectability of each mechanism and, finally, highlight key
problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and
Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor
corrections to match published versio
Search for Kaluza-Klein Graviton Emission in Collisions at TeV using the Missing Energy Signature
We report on a search for direct Kaluza-Klein graviton production in a data
sample of 84 of \ppb collisions at = 1.8 TeV, recorded
by the Collider Detector at Fermilab. We investigate the final state of large
missing transverse energy and one or two high energy jets. We compare the data
with the predictions from a -dimensional Kaluza-Klein scenario in which
gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for
=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71
TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure
Measurement of the average time-integrated mixing probability of b-flavored hadrons produced at the Tevatron
We have measured the number of like-sign (LS) and opposite-sign (OS) lepton
pairs arising from double semileptonic decays of and -hadrons,
pair-produced at the Fermilab Tevatron collider. The data samples were
collected with the Collider Detector at Fermilab (CDF) during the 1992-1995
collider run by triggering on the existence of and candidates
in an event. The observed ratio of LS to OS dileptons leads to a measurement of
the average time-integrated mixing probability of all produced -flavored
hadrons which decay weakly, (stat.)
(syst.), that is significantly larger than the world average .Comment: 47 pages, 10 figures, 15 tables Submitted to Phys. Rev.
- …