521 research outputs found

    Comment on "Ising model on a small world network"

    Full text link
    In the recent study of the Ising model on a small-world network by A. P\c{e}kalski [Phys. Rev. E {\bf 64}, 057104 (2001)], a surprisingly small value of the critical exponent β0.0001\beta \approx 0.0001 has been obtained for the temperature dependence of the magnetization. We perform extensive Monte Carlo simulations of the same model and conclude, via the standard finite-size scaling of various quantities,that the phase transition in the model is of the mean-field nature, in contrast to the work by A. P\c{e}kalski but in accord with other existing studies.Comment: to be published in PR

    Stability of shortest paths in complex networks with random edge weights

    Full text link
    We study shortest paths and spanning trees of complex networks with random edge weights. Edges which do not belong to the spanning tree are inactive in a transport process within the network. The introduction of quenched disorder modifies the spanning tree such that some edges are activated and the network diameter is increased. With analytic random-walk mappings and numerical analysis, we find that the spanning tree is unstable to the introduction of disorder and displays a phase-transition-like behavior at zero disorder strength ϵ=0\epsilon=0. In the infinite network-size limit (NN\to \infty), we obtain a continuous transition with the density of activated edges Φ\Phi growing like Φϵ1\Phi \sim \epsilon^1 and with the diameter-expansion coefficient Υ\Upsilon growing like Υϵ2\Upsilon\sim \epsilon^2 in the regular network, and first-order transitions with discontinuous jumps in Φ\Phi and Υ\Upsilon at ϵ=0\epsilon=0 for the small-world (SW) network and the Barab\'asi-Albert scale-free (SF) network. The asymptotic scaling behavior sets in when NNcN\gg N_c, where the crossover size scales as Ncϵ2N_c\sim \epsilon^{-2} for the regular network, Ncexp[αϵ2]N_c \sim \exp[\alpha \epsilon^{-2}] for the SW network, and Ncexp[αlnϵϵ2]N_c \sim \exp[\alpha |\ln \epsilon| \epsilon^{-2}] for the SF network. In a transient regime with NNcN\ll N_c, there is an infinite-order transition with ΦΥexp[α/(ϵ2lnN)]\Phi\sim \Upsilon \sim \exp[-\alpha / (\epsilon^2 \ln N)] for the SW network and exp[α/(ϵ2lnN/lnlnN)]\sim \exp[ -\alpha / (\epsilon^2 \ln N/\ln\ln N)] for the SF network. It shows that the transport pattern is practically most stable in the SF network.Comment: 9 pages, 7 figur

    The ultraviolet Behaviour of Integrable Quantum Field Theories, Affine Toda Field Theory

    Get PDF
    We investigate the thermodynamic Bethe ansatz (TBA) equations for a system of particles which dynamically interacts via the scattering matrix of affine Toda field theory and whose statistical interaction is of a general Haldane type. Up to the first leading order, we provide general approximated analytical expressions for the solutions of these equations from which we derive general formulae for the ultraviolet scaling functions for theories in which the underlying Lie algebra is simply laced. For several explicit models we compare the quality of the approximated analytical solutions against the numerical solutions. We address the question of existence and uniqueness of the solutions of the TBA-equations, derive precise error estimates and determine the rate of convergence for the applied numerical procedure. A general expression for the Fourier transformed kernels of the TBA-equations allows to derive the related Y-systems and a reformulation of the equations into a universal form.Comment: 37 pp Latex, 5 figure

    Gravitational waves from rapidly rotating neutron stars

    Full text link
    Rapidly rotating neutron stars in Low Mass X-ray Binaries have been proposed as an interesting source of gravitational waves. In this chapter we present estimates of the gravitational wave emission for various scenarios, given the (electromagnetically) observed characteristics of these systems. First of all we focus on the r-mode instability and show that a 'minimal' neutron star model (which does not incorporate exotica in the core, dynamically important magnetic fields or superfluid degrees of freedom), is not consistent with observations. We then present estimates of both thermally induced and magnetically sustained mountains in the crust. In general magnetic mountains are likely to be detectable only if the buried magnetic field of the star is of the order of B1012B\approx 10^{12} G. In the thermal mountain case we find that gravitational wave emission from persistent systems may be detected by ground based interferometers. Finally we re-asses the idea that gravitational wave emission may be balancing the accretion torque in these systems, and show that in most cases the disc/magnetosphere interaction can account for the observed spin periods.Comment: To appear in 'Gravitational Waves Astrophysics: 3rd Session of the Sant Cugat Forum on Astrophysics, 2014', Editor: Carlos F. Sopuert

    An effective local routing strategy on the BA network

    Full text link
    In this paper, We propose a effective routing strategy on the basis of the so-called nearest neighbor search strategy by introducing a preferential delivering exponent alpha. we assume that the handling capacity of one vertex is proportional to its degree when the degree is smaller than a cut-off value KK, and is infinite otherwise. It is found that by tuning the parameter alpha, the scale-free network capacity measured by the order parameter is considerably enhanced compared to the normal nearest-neighbor strategy. Traffic dynamics both near and far away from the critical generating rate R_c are discussed. We also investigate R_c as functions of m (connectivity density), K (cutoff value). Due to the low cost of acquiring nearest-neighbor information and the strongly improved network capacity, our strategy may be useful and reasonable for the protocol designing of modern communication networks.Comment: 9 pages, 5 figure

    Self-avoiding walks and connective constants in small-world networks

    Full text link
    Long-distance characteristics of small-world networks have been studied by means of self-avoiding walks (SAW's). We consider networks generated by rewiring links in one- and two-dimensional regular lattices. The number of SAW's unu_n was obtained from numerical simulations as a function of the number of steps nn on the considered networks. The so-called connective constant, μ=limnun/un1\mu = \lim_{n \to \infty} u_n/u_{n-1}, which characterizes the long-distance behavior of the walks, increases continuously with disorder strength (or rewiring probability, pp). For small pp, one has a linear relation μ=μ0+ap\mu = \mu_0 + a p, μ0\mu_0 and aa being constants dependent on the underlying lattice. Close to p=1p = 1 one finds the behavior expected for random graphs. An analytical approach is given to account for the results derived from numerical simulations. Both methods yield results agreeing with each other for small pp, and differ for pp close to 1, because of the different connectivity distributions resulting in both cases.Comment: 7 pages, 5 figure

    Effect of Quantum Fluctuations in an Ising System on Small-World Networks

    Full text link
    We study quantum Ising spins placed on small-world networks. A simple model is considered in which the coupling between any given pair of spins is a nonzero constant if they are linked in the small-world network and zero otherwise. By applying a transverse magnetic field, we have investigated the effect of quantum fluctuations. Our numerical analysis shows that the quantum fluctuations do not alter the universality class at the ferromagnetic phase transition, which is of the mean-field type. The transition temperature is reduced by the quantum fluctuations and eventually vanishes at the critical transverse field Δc\Delta_c. With increasing rewiring probability, Δc\Delta_c is shown to be enhanced.Comment: 5 pages, 5 figure

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change
    corecore