1,606 research outputs found

    N identical particles under quantum confinement: A many-body dimensional perturbation theory approach

    Full text link
    Systems that involve N identical interacting particles under quantum confinement appear throughout many areas of physics, including chemical, condensed matter, and atomic physics. In this paper, we present the methods of dimensional perturbation theory, a powerful set of tools that uses symmetry to yield simple results for studying such many-body systems. We present a detailed discussion of the dimensional continuation of the N-particle Schrodinger equation, the spatial dimension D -> infinity equilibrium (D^0) structure, and the normal-mode (D^{-1}) structure. We use the FG matrix method to derive general, analytical expressions for the many-body normal-mode vibrational frequencies, and we give specific analytical results for three confined N-body quantum systems: the N-electron atom, N-electron quantum dot, and N-atom inhomogeneous Bose-Einstein condensate with a repulsive hardcore potential

    Variability of organic and elemental carbon, water soluble organic carbon, and isotopes in Hong Kong

    Get PDF
    International audienceTo determine the levels and variations of carbonaceous aerosol in Hong Kong, PM2.5 and PM10 samples were collected by high volume (Hi-vol) samplers at three monitoring stations (representing middle-scale roadside, urban-, and regional-scale environments) during winter (November 2000 to February 2001) and summer (June 2001 to August 2001) periods. The highest concentrations of organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC) were found at the middle-scale roadside site with the lowest at the regional-scale site. The percentages of WSOC in total carbon at these sites were inversely correlated with their concentrations (i.e., the highest percentages of WSOC were observed at the regional-scale site). A high WSOC fraction may be associated with aged aerosol because of the secondary formation by photochemical oxidation of organic precursors of anthropogenic pollutants during transport. The annual average of isotope abundances (?13C) of OC and EC were ?26.9±0.5? and ?25.6±0.1?, respectively. There were no notable differences for seasonal distributions of carbon isotopic composition, consistent with motor vehicle emissions being the main source contributors of carbonaceous aerosol in Hong Kong. OC 13C abundances at the regional-scale site were higher than those at the middle-scale roadside and urban sites, consistent with secondary organic aerosols of biogenic origin

    Helicity Analysis of Semileptonic Hyperon Decays Including Lepton Mass Effects

    Full text link
    Using the helicity method we derive complete formulas for the joint angular decay distributions occurring in semileptonic hyperon decays including lepton mass and polarization effects. Compared to the traditional covariant calculation the helicity method allows one to organize the calculation of the angular decay distributions in a very compact and efficient way. In the helicity method the angular analysis is of cascade type, i.e. each decay in the decay chain is analyzed in the respective rest system of that particle. Such an approach is ideally suited as input for a Monte Carlo event generation program. As a specific example we take the decay Ξ0Σ++l+νˉl\Xi^0 \to \Sigma^+ + l^- + \bar{\nu}_l (l=e,μl^-=e^-, \mu^-) followed by the nonleptonic decay Σ+p+π0\Sigma^+ \to p + \pi^0 for which we show a few examples of decay distributions which are generated from a Monte Carlo program based on the formulas presented in this paper. All the results of this paper are also applicable to the semileptonic and nonleptonic decays of ground state charm and bottom baryons, and to the decays of the top quark.Comment: Published version. 40 pages, 11 figures included in the text. Typos corrected, comments added, references added and update

    The dopamine D3-preferring D2/D3 dopamine receptor partial agonist, cariprazine, reverses behavioral changes in a rat neurodevelopmental model for schizophrenia

    Get PDF
    Current antipsychotic medication is largely ineffective against the negative and cognitive symptoms of schizophrenia. One promising therapeutic development is to design new molecules that balance actions on dopamine D2 and D3 receptors to maximise benefits and limit adverse effects. This study used two rodent paradigms to investigate the action of the dopamine D3-preferring D3/D2 receptor partial agonist cariprazine. In adult male rats, cariprazine (0.03-0.3mg/kg i.p.), and the atypical antipsychotic aripiprazole (1-3mg/kg i.p.) caused dose-dependent reversal of a delay-induced impairment in novel object recognition (NOR). Treating neonatal rat pups with phencyclidine (PCP) and subsequent social isolation produced a syndrome of behavioral alterations in adulthood including hyperactivity in a novel arena, deficits in NOR and fear motivated learning and memory, and a reduction and change in pattern of social interaction accompanied by increased ultrasonic vocalisations (USVs). Acute administration of cariprazine (0.1 and 0.3mg/kg) and aripiprazole (3mg/kg) to resultant adult rats reduced neonatal PCP-social isolation induced locomotor hyperactivity and reversed NOR deficits. Cariprazine (0.3mg/kg) caused a limited reversal of the social interaction deficit but neither drug affected the change in USVs or the deficit in fear motivated learning and memory. Results suggest that in the behavioral tests investigated cariprazine is at least as effective as aripiprazole and in some paradigms it showed additional beneficial features further supporting the advantage of combined dopamine D3/D2 receptor targeting. These findings support recent clinical studies demonstrating the efficacy of cariprazine in treatment of negative symptoms and functional impairment in schizophrenia patients

    Environmental Regulation Can Arise Under Minimal Assumptions

    No full text
    Models that demonstrate environmental regulation as a consequence of organism and environment coupling all require a number of core assumptions. Many previous models, such as Daisyworld, require that certain environment-altering traits have a selective advantage when those traits also contribute towards global regulation. We present a model that results in the regulation of a global environmental resource through niche construction without employing this and other common assumptions. There is no predetermined environmental optimum towards which regulation should proceed assumed or coded into the model. Nevertheless, polymorphic stable states that resist perturbation emerge from the simulated co-evolution of organisms and environment. In any single simulation a series of different stable states are realised, punctuated by rapid transitions. Regulation is achieved through two main subpopulations that are adapted to slightly different resource values, which force the environmental resource in opposing directions. This maintains the resource within a comparatively narrow band over a wide range of external perturbations. Population driven oscillations in the resource appear to be instrumental in protecting the regulation against mutations that would otherwise destroy it. Sensitivity analysis shows that the regulation is robust to mutation and to a wide range of parameter settings. Given the minimal assumptions employed, the results could reveal a mechanism capable of environmental regulation through the by-products of organisms

    A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile

    Get PDF
    Air quality time series consists of complex linear and non-linear patterns and are difficult to forecast. Box-Jenkins Time Series (ARIMA) and multilinear regression (MLR) models have been applied to air quality forecasting in urban areas, but they have limited accuracy owing to their inability to predict extreme events. Artificial neural networks (ANN) can recognize non-linear patterns that include extremes. A novel hybrid model combining ARIMA and ANN to improve forecast accuracy for an area with limited air quality and meteorological data was applied to Temuco, Chile, where residential wood burning is a major pollution source during cold winters, using surface meteorological and PM10 measurements. Experimental results indicated that the hybrid model can be an effective tool to improve the PM10 forecasting accuracy obtained by either of the models used separately, and compared with a deterministic MLR. The hybrid model was able to capture 100% and 80% of alert and pre-emergency episodes, respectively. This approach demonstrates the potential to be applied to air quality forecasting in other cities and countries

    Comparative Pro-cognitive and Neurochemical Profiles of Glycine Modulatory Site Agonists and Glycine Reuptake Inhibitors in the Rat: Potential Relevance to Cognitive Dysfunction and Its Management

    Get PDF
    © 2020, The Author(s). Frontocortical NMDA receptors are pivotal in regulating cognition and mood, are hypofunctional in schizophrenia, and may contribute to autistic spectrum disorders. Despite extensive interest in agents potentiating activity at the co-agonist glycine modulatory site, few comparative functional studies exist. This study systematically compared the actions of the glycine reuptake inhibitors, sarcosine (40–200mg/kg) and ORG24598 (0.63–5mg/kg), the agonists, glycine (40–800mg/kg), and D-serine (10–160mg/kg) and the partial agonists, S18841 (2.5mg/kg s.c.) and D-cycloserine (2.5–40mg/kg) that all dose-dependently prevented scopolamine disruption of social recognition in adult rats. Over similar dose ranges, they also prevented a delay-induced impairment of novel object recognition (NOR). Glycine reuptake inhibitors specifically elevated glycine but not D-serine levels in rat prefrontal cortical (PFC) microdialysates, while glycine and D-serine markedly increased levels of glycine and D-serine, respectively. D-Cycloserine slightly elevated D-serine levels. Conversely, S18841 exerted no influence on glycine, D-serine, other amino acids, monamines, or acetylcholine. Reversal of NOR deficits by systemic S18841 was prevented by the NMDA receptor antagonist, CPP (20mg/kg), and the glycine modulatory site antagonist, L701,324 (10mg/kg). S18841 blocked deficits in NOR following microinjection into the PFC (2.5–10μg/side) but not the striatum. Finally, in rats socially isolated from weaning (a neurodevelopmental model of schizophrenia), S18841 (2.5 and 10mg/kgs.c.) reversed impairment of NOR and contextual fear-motivated learning without altering isolation-induced hyperactivity. In conclusion, despite contrasting neurochemical profiles, partial glycine site agonists and glycine reuptake inhibitors exhibit comparable pro-cognitive effects in rats of potential relevance to treatment of schizophrenia and other brain disorders where cognitive performance is impaired

    Manganese-enhanced magnetic resonance imaging depicts brain activity in models of acute and chronic pain: a new window to study experimental spontaneous pain?

    Get PDF
    Application of functional imaging techniques to animal models is vital to understand pain mechanisms, but is often confounded by the need to limit movement artefacts with anaesthesia, and a focus on evoked responses rather than clinically relevant spontaneous pain and related hyperalgesia. The aim of the present study was to investigate the potential of manganese-enhanced magnetic resonance imaging (MEMRI) to measure neural responses during on-going pain that underpins hyperalgesia in pre-clinical models of nociception. As a proof of concept that MEMRI is sensitive to the neural activity of spontaneous, intermittent behaviour, we studied a separate positive control group undergoing a voluntary running wheel experiment. In the pain models, pain behaviour (weight bearing asymmetry and hindpaw withdrawal thresholds (PWTs)) was measured at baseline and following either intra-articular injection of nerve growth factor (NGF, 10 µg/50 µl; acute pain model, n=4 rats per group), or the chondrocyte toxin monosodium iodoacetate (MIA, 1 mg/50 µl; chronic model, n=8 rats per group), or control injection. Separate groups of rats underwent a voluntary wheel running protocol (n=8 rats per group). Rats were administered with paramagnetic ion Mn2+ as soluble MnCl2 over seven days (subcutaneous osmotic pump) to allow cumulative activity-dependent neural accumulation in the models of pain, or over a period of running. T1-weighted MR imaging at 7 T was performed under isoflurane anaesthesia using a receive-only rat head coil in combination with a 72 mm volume coil for excitation. The pain models resulted in weight bearing asymmetry (NGF: 20.0 ± 5.2%, MIA: 15 ± 3%), and a reduction in PWT in the MIA model (8.3 ± 1.5 g) on the final day of assessment before undergoing MR imaging. Voxel-wise and region-based analysis of MEMRI data did not identify group differences in T1 signal. However, MnCl2 accumulation in the VTA, right Ce amygdala, and left cingulate was negatively correlated with pain responses (greater differences in weight bearing), similarly MnCl2 accumulation was reduced in the VTA in line with hyperalgesia (lower PWTs), which suggests reduced regional activation as a result of the intensity and duration of pain experienced during the 7 days of MnCl2 exposure. Motor cortex T1-weighted signal increase was associated with the distance ran in the wheel running study, while no between group difference was seen. Our data suggest that on-going pain related signal changes identified using MEMRI offers a new window to study the neural underpinnings of spontaneous pain in rats

    The study of the negative pion production in neutron-proton collisions at beam momenta below 1.8 GeV/c

    Full text link
    A detailed investigation of the reaction np -> pp\pi^{-} has been carried out using the data obtained with the continuous neutron beam produced by charge exchange scattering of protons off a deuterium target. A partial wave event-by-event based maximum likelihood analysis was applied to determine contributions of different partial waves to the pion production process. The combined analysis of the np -> pp\pi^{-} and pp -> pp\pi^{0} data measured in the same energy region allows us to determine the contribution of isoscalar partial waves (I=0) in the momentum range from 1.1 up to 1.8 GeV/c. The decay of isoscalar partial waves into (^1S_0)_{pp}\pi$ channel provides a good tool for a determination of the pp S-wave scalar scattering length in the final state which was found to be a_{pp}=-7.5\pm 0.3 fm.Comment: 6 pages, 6 figure
    corecore