2,412 research outputs found

    Novel insights into diminished cardiac reserve in non-obstructive hypertrophic cardiomyopathy from four-dimensional flow cardiac magnetic resonance component analysis

    Get PDF
    Aims: Hypertrophic cardiomyopathy (HCM) is characterized by hypercontractility and diastolic dysfunction, which alter blood flow haemodynamics and are linked with increased risk of adverse clinical events. Four-dimensional flow cardiac magnetic resonance (4D-flow CMR) enables comprehensive characterization of ventricular blood flow patterns. We characterized flow component changes in non-obstructive HCM and assessed their relationship with phenotypic severity and sudden cardiac death (SCD) risk. Methods and results: Fifty-one participants (37 non-obstructive HCM and 14 matched controls) underwent 4D-flow CMR. Left-ventricular (LV) end-diastolic volume was separated into four components: direct flow (blood transiting the ventricle within one cycle), retained inflow (blood entering the ventricle and retained for one cycle), delayed ejection flow (retained ventricular blood ejected during systole), and residual volume (ventricular blood retained for >two cycles). Flow component distribution and component end-diastolic kinetic energy/mL were estimated. HCM patients demonstrated greater direct flow proportions compared with controls (47.9 ± 9% vs. 39.4 ± 6%, P = 0.002), with reduction in other components. Direct flow proportions correlated with LV mass index (r = 0.40, P = 0.004), end-diastolic volume index (r = −0.40, P = 0.017), and SCD risk (r = 0.34, P = 0.039). In contrast to controls, in HCM, stroke volume decreased with increasing direct flow proportions, indicating diminished volumetric reserve. There was no difference in component end-diastolic kinetic energy/mL. Conclusion: Non-obstructive HCM possesses a distinctive flow component distribution pattern characterised by greater direct flow proportions, and direct flow-stroke volume uncoupling indicative of diminished cardiac reserve. The correlation of direct flow proportion with phenotypic severity and SCD risk highlight its potential as a novel and sensitive haemodynamic measure of cardiovascular risk in HCM

    Expansion of airway basal epithelial cells from primary human non-small cell lung cancer tumors

    Get PDF
    Pre-clinical non-small cell lung cancer (NSCLC) models are poorly representative of the considerable inter- and intra-tumor heterogeneity of the disease in patients. Primary cell-based in vitro models of NSCLC are therefore desirable for novel therapy development and personalized cancer medicine. Methods have been described to generate rapidly proliferating epithelial cell cultures from multiple human epithelia using 3T3-J2 feeder cell culture in the presence of Y-27632, a RHO-associated protein kinase (ROCK) inhibitor, in what are known as "conditional reprograming conditions" (CRC) or 3T3+Y. In some cancer studies, variations of this methodology have allowed primary tumor cell expansion across a number of cancer types but other studies have demonstrated the preferential expansion of normal epithelial cells from tumors in such conditions. Here, we report our experience regarding the derivation of primary NSCLC cell cultures from 12 lung adenocarcinoma patients enrolled in the Tracking Cancer Evolution through Therapy (TRACERx) clinical study and discuss these in the context of improving the success rate for in vitro cultivation of cells from NSCLC tumors. This article is protected by copyright. All rights reserved

    A sense of embodiment is reflected in people's signature size

    Get PDF
    BACKGROUND: The size of a person's signature may reveal implicit information about how the self is perceived although this has not been closely examined. METHODS/RESULTS: We conducted three experiments to test whether increases in signature size can be induced. Specifically, the aim of these experiments was to test whether changes in signature size reflect a person's current implicit sense of embodiment. Experiment 1 showed that an implicit affect task (positive subliminal evaluative conditioning) led to increases in signature size relative to an affectively neutral task, showing that implicit affective cues alter signature size. Experiments 2 and 3 demonstrated increases in signature size following experiential self-focus on sensory and affective stimuli relative to both conceptual self-focus and external (non-self-focus) in both healthy participants and patients with anorexia nervosa, a disorder associated with self-evaluation and a sense of disembodiment. In all three experiments, increases in signature size were unrelated to changes in self-reported mood and larger than manipulation unrelated variations. CONCLUSIONS: Together, these findings suggest that a person's sense of embodiment is reflected in their signature size

    Cross-Cultural Validation of the Inventory of School Motivation (ISM) in the Asian Setting: Hong Kong and the Philippines

    Get PDF
    Students’ achievement goals in school have received increasing research attention because they have been shown to be important in predicting important outcomes. As such, there has been a growing interest in measuring and comparing them across different cultural groups. However, these comparisons cannot be made until validity evidence has been attained to support the use of an instrument in the new cultural setting. In this study, we investigated the cross-cultural applicability of the Inventory of School Motivation (ISM, McInerney et al. American Educational Research Journal 34:207-236, 1997) in the Hong Kong Chinese and Philippine contexts using both within-network and between-network approaches to construct validation. The ISM measures four types of achievement goals: mastery, performance, social, and extrinsic goals. 1,406 high school students from Hong Kong (n = 697) and the Philippines (n = 709) participated. Results of the within-network test showed that the ISM had good internal consistency reliability and the confirmatory factor analysis provided support for the hypothesized four-factor model. Multigroup confirmatory factor analyses supported invariance of factor loadings across the two samples. The between-network test also indicated that these achievement goals correlated systematically with different aspects of students’ self-concepts. These findings support the applicability of the ISM among Hong Kong Chinese and Filipino students

    Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution

    Get PDF
    It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (“exon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing

    MASTL overexpression promotes chromosome instability and metastasis in breast cancer.

    Full text link
    MASTL kinase is essential for correct progression through mitosis, with loss of MASTL causing chromosome segregation errors, mitotic collapse and failure of cytokinesis. However, in cancer MASTL is most commonly amplified and overexpressed. This correlates with increased chromosome instability in breast cancer and poor patient survival in breast, ovarian and lung cancer. Global phosphoproteomic analysis of immortalised breast MCF10A cells engineered to overexpressed MASTL revealed disruption to desmosomes, actin cytoskeleton, PI3K/AKT/mTOR and p38 stress kinase signalling pathways. Notably, these pathways were also disrupted in patient samples that overexpress MASTL. In MCF10A cells, these alterations corresponded with a loss of contact inhibition and partial epithelial-mesenchymal transition, which disrupted migration and allowed cells to proliferate uncontrollably in 3D culture. Furthermore, MASTL overexpression increased aberrant mitotic divisions resulting in increased micronuclei formation. Mathematical modelling indicated that this delay was due to continued inhibition of PP2A-B55, which delayed timely mitotic exit. This corresponded with an increase in DNA damage and delayed transit through interphase. There were no significant alterations to replication kinetics upon MASTL overexpression, however, inhibition of p38 kinase rescued the interphase delay, suggesting the delay was a G2 DNA damage checkpoint response. Importantly, knockdown of MASTL, reduced cell proliferation, prevented invasion and metastasis of MDA-MB-231 breast cancer cells both in vitro and in vivo, indicating the potential of future therapies that target MASTL. Taken together, these results suggest that MASTL overexpression contributes to chromosome instability and metastasis, thereby decreasing breast cancer patient survival

    Consistency of LCDM with Geometric and Dynamical Probes

    Full text link
    The LCDM cosmological model assumes the existence of a small cosmological constant in order to explain the observed accelerating cosmic expansion. Despite the dramatic improvement of the quality of cosmological data during the last decade it remains the simplest model that fits remarkably well (almost) all cosmological observations. In this talk I review the increasingly successful fits provided by LCDM on recent geometric probe data of the cosmic expansion. I also briefly discuss some emerging shortcomings of the model in attempting to fit specific classes of data (eg cosmic velocity dipole flows and cluster halo profiles). Finally, I summarize recent results on the theoretically predicted matter overdensity (δm=δρmρm\delta_m=\frac{\delta \rho_m}{\rho_m}) evolution (a dynamical probe of the cosmic expansion), emphasizing its scale and gauge dependence on large cosmological scales in the context of general relativity. A new scale dependent parametrization which describes accurately the growth rate of perturbations even on scales larger than 100h^{-1}Mpc is shown to be a straightforward generalization of the well known scale independent parametrization f(a)=\omms(a)^\gamma valid on smaller cosmological scales.Comment: 20 pages, 6 figures. Invited review at the 1st Mediterranean Conference on Classical and Quantum Gravity (MCCQG). To appear in the proceeding
    corecore