14,974 research outputs found

    Potential for Solar Energy in Food Manufacturing, Distribution and Retail

    Get PDF
    The overall aim of the study was to assess the potential for increasing the use of solar energy in the food sector. For comparative purposes the study also included an assessment of the benefits that could arise from the use of other renewable energy sources, and the potential for more effective use of energy in food retail and distribution. Specific objectives were to: i) establish the current state of the art in relevant available solar technology; ii) identify the barriers for the adoption of solar technology; iii) assess the potential for solar energy capture; iv) appraise the potential of alternative relevant technologies for providing renewable energy; v) assess the benefits from energy saving technologies; vi) compare the alternative strategies for the next 5-10 years and vii) Consider the merits of specific research programmes on solar energy and energy conservation in the food sector. To obtain the views of the main stakeholders in the relevant food and energy sectors on the opportunities and barriers to the adoption of solar energy and other renewable energy technologies by the food industry, personal interviews and structured questionnaires tailored to the main stakeholders (supermarkets, consultants for supermarket design; energy and equipment suppliers) were used. The main findings from the questionnaires and interviews are: - Key personnel in supermarkets and engineers involved in the design of supermarkets are aware of the potential contribution of renewable energy technologies and other energy conservation measures to energy conservation and environmental impact reduction in the food industry. A number of supermarket chains have implemented such technologies at pilot scale to gain operating experience, and more importantly, for marketing reasons, to gain competitive advantage through a green image. - From installations to date in the UK the most notable are a 600 kW wind turbine at a Sainsbury's distribution centre in East Kilbride and a 60 kWp photovoltaic array at a Tesco store in Swansea. - The main barrier to the application of renewable energy technologies in the food sector is the capital cost. Even though significant progress has been made towards the improvement of the energy conversion efficiencies of photovoltaic technologies (PVs) and reduction in their cost, payback periods are still far too long, for them to become attractive to the food industry. - Wind energy can be more attractive than PVs in areas of high wind speed. Apart from relatively high cost, the main barrier to the wide application of wind turbines for local power generation is planning restrictions. This technology is more attractive for application in food distribution centres that are normally located outside build-up areas where planning restrictions can be less severe than in urban areas. In these applications it is likely that preference will be for large wind turbines of more than 1.0 MW power generation capacity as the cost of generation per unit power reduces with the size of the turbine

    Data mining and fusion

    No full text

    Acute lung injury in paediatric intensive care: course and outcome

    Get PDF
    Introduction: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) carry a high morbidity and mortality (10-90%). ALI is characterised by non-cardiogenic pulmonary oedema and refractory hypoxaemia of multifactorial aetiology [1]. There is limited data about outcome particularly in children. Methods This retrospective cohort study of 85 randomly selected patients with respiratory failure recruited from a prospectively collected database represents 7.1% of 1187 admissions. They include those treated with High Frequency Oscillation Ventilation (HFOV). The patients were admitted between 1 November 1998 and 31 October 2000. Results: Of the 85, 49 developed acute lung injury and 47 had ARDS. There were 26 males and 23 females with a median age and weight of 7.7 months (range 1 day-12.8 years) and 8 kg (range 0.8-40 kg). There were 7 deaths giving a crude mortality of 14.3%, all of which fulfilled the Consensus I [1] criteria for ARDS. Pulmonary occlusion pressures were not routinely measured. The A-a gradient and PaO2/FiO2 ratio (median + [95% CI]) were 37.46 [31.82-43.1] kPa and 19.12 [15.26-22.98] kPa respectively. The non-survivors had a significantly lower PaO2/FiO2 ratio (13 [6.07-19.93] kPa) compared to survivors (23.85 [19.57-28.13] kPa) (P = 0.03) and had a higher A-a gradient (51.05 [35.68-66.42] kPa) compared to survivors (36.07 [30.2-41.94]) kPa though not significant (P = 0.06). Twenty-nine patients (59.2%) were oscillated (Sensormedics 3100A) including all 7 non-survivors. There was no difference in ventilation requirements for CMV prior to oscillation. Seventeen of the 49 (34.7%) were treated with Nitric Oxide including 5 out of 7 non-survivors (71.4%). The median (95% CI) number of failed organs was 3 (1.96-4.04) for non-survivors compared to 1 (0.62-1.62) for survivors (P = 0.03). There were 27 patients with isolated respiratory failure all of whom survived. Six (85.7%) of the non-survivors also required cardiovascular support.Conclusion: A crude mortality of 14.3% compares favourably to published data. The A-a gradient and PaO2/FiO2 ratio may be of help in morbidity scoring in paediatric ARDS. Use of Nitric Oxide and HFOV is associated with increased mortality, which probably relates to the severity of disease. Multiple organ failure particularly respiratory and cardiac disease is associated with increased mortality. ARDS with isolated respiratory failure carries a good prognosis in children

    Investigation of in situ physical properties of surface and subsurface site materials by engineering geophysical techniques Project quarterly report, 1 Oct. - 31 Dec. 1965

    Get PDF
    Physical properties of surface and near surface in situ material by engineering and geophysical techniques for possible lunar surface analog

    Automated Retrieval of Non-Engineering Domain Solutions to Engineering Problems

    Get PDF
    Organised by: Cranfield UniversityBiological inspiration for engineering design has occurred through a variety of techniques such as creation and use of databases, keyword searches of biological information in natural-language format, prior knowledge of biology, and chance observations of nature. This research focuses on utilizing the reconciled Functional Basis function and flow terms to identify suitable biological inspiration for function based design. The organized search provides two levels of results: (1) associated with verb function only and (2) narrowed results associated with verb-noun (function-flow). A set of heuristics has been complied to promote efficient searching using this technique. An example for creating smart flooring is also presented and discussed.Mori Seiki – The Machine Tool Compan

    Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection

    Get PDF
    We investigate the utility of the convex hull of many Lagrangian tracers to analyze transport properties of turbulent flows with different anisotropy. In direct numerical simulations of statistically homogeneous and stationary Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD Boussinesq convection a comparison with Lagrangian pair dispersion shows that convex hull statistics capture the asymptotic dispersive behavior of a large group of passive tracer particles. Moreover, convex hull analysis provides additional information on the sub-ensemble of tracers that on average disperse most efficiently in the form of extreme value statistics and flow anisotropy via the geometric properties of the convex hulls. We use the convex hull surface geometry to examine the anisotropy that occurs in turbulent convection. Applying extreme value theory, we show that the maximal square extensions of convex hull vertices are well described by a classic extreme value distribution, the Gumbel distribution. During turbulent convection, intermittent convective plumes grow and accelerate the dispersion of Lagrangian tracers. Convex hull analysis yields information that supplements standard Lagrangian analysis of coherent turbulent structures and their influence on the global statistics of the flow.Comment: 18 pages, 10 figures, preprin

    Fluttering energy harvesters in the wind: A review

    Get PDF
    The growing area of harvesting energy by aerodynamically induced flutter in a fluid stream is reviewed. Numerous approaches were found to understand, demonstrate and [sometimes] optimise harvester performance based on Movement-Induced or Extraneously Induced Excitation. Almost all research was conducted in smooth, unidirectional flow domains; either experimental or computational. The power outputs were found to be very low when compared to conventional wind turbines, but potential advantages could be lower noise levels. A consideration of the likely outdoor environment for fluttering harvesters revealed that the flow would be highly turbulent and having a mean flow angle in the horizontal plane that could approach a harvester from any direction. Whilst some multiple harvester systems in smooth, well-aligned flow found enhanced efficiency (due to beneficial wake interaction) this would require an invariant flow approach angle. It was concluded that further work needs to be performed to find a universally accepted metric for efficiency and to understand the effects of the realities of the outdoors, including the highly variable and turbulent flow conditions likely to be experienced

    The Decay of Accreting Triple Systems as Brown Dwarf Formation Scenario

    Full text link
    We investigate the dynamical decay of non-hierarchical accreting triple systems and its implications on the ejection model as Brown Dwarf formation scenario. A modified chain-regularization scheme is used to integrate the equations of motion, that also allows for mass changes over time as well as for momentum transfer from the accreted gas mass onto the bodies. We integrate an ensemble of triple systems within a certain volume with different accretion rates, assuming several prescriptions of how momentum is transferred onto the bodies. We follow their evolution until the systems have decayed. We analyze the end states and decay times of these systems and determine the fraction of Brown Dwarfs formed, their escape speeds as well as the semi-major axis distribution of the formed Brown Dwarf binaries. We find that the formation probability of Brown Dwarfs depends strongly on the assumed momentum transfer which is related to the motion of the gas. Due to ongoing accretion and consequent shrinkage of the systems, the median escape velocity is increased by a factor of 2 and the binary separations are decreased by a factor of 5 compared with non-accreting systems. Furthermore, the obtained semi-major axis distribution drops off sharply to either side of the median, which is also supported by observations. We conclude that accretion and momentum transfer of accreted gas during the dynamical decay of triple systems is able to produce the observed distribution of close binary Brown Dwarfs, making the ejection model a viable option as Brown Dwarf formation scenario.Comment: 31 pages, 8 figures, accepted for publication in Ap

    Searching for Planets in the Hyades. I. The Keck Radial Velocity Survey

    Get PDF
    We describe a high-precision radial velocity search for jovian-mass companions to main sequence stars in the Hyades star cluster. The Hyades provides an extremely well controlled sample of stars of the same age, the same metallicity, and a common birth and early dynamical environment. This sample allows us to explore the dependence of the process of planet formation on only a single independent variable: the stellar mass. In this paper we describe the survey and summarize results for the first five years.Comment: 8 pages, 3 figures; To appear in the July 2002 issue of The Astronomical Journa
    • …
    corecore