194 research outputs found

    Nurses\u27 Alumnae Association Bulletin, June 1969

    Get PDF
    Alumnae President\u27s Message Officers and Chairmen Financial Report Progressive Changes at Jefferson School of Nursing Report Student Activities School of Practical Nursing Report Jefferson Expansion Report Clerk-Typist Report Committee Reports Resume of Alumnae Meetings Class News 1969 CLINIC Correspondence Notice

    Sensitive, challenging, and difficult topics: Experiences and practical considerations for qualitative researchers

    Get PDF
    Qualitative researchers often engage in work addressing challenging, difficult, or sensitive topics and are consequently exposed to the participants’ narratives which may be emotionally charged, distressing, or compromising. These narratives occasionally rest heavy on a researcher’s conscience or may linger in the mind. Much literature has assessed how best to keep participants safe, but less attention has been given to how we keep researchers safe. We therefore document the following: (1) Our experiences of the issues presented by undertaking qualitative research involving challenging, difficult, or sensitive topics; and (2) Practical principles devised to overcome these issues, ensuring safety and wellbeing amongst researchers engaging in these types of qualitative research. We provide guidance for qualitative researchers of all levels of experience and expertise on how best to protect and support themselves, their colleagues, and other collaborating research staff, when undertaking qualitative research which might otherwise feel uncomfortable or overwhelming to tackle

    Using appreciative inquiry to develop, implement and evaluate a multi-organisation ‘Cultivating Compassion’ programme for health professionals and support staff

    Get PDF
    The ‘Cultivating Compassion’ project was developed in response to a research and innovation call relating to compassion training for National Health Service staff in the South East of England. The project aims included the following: the use of Appreciative Inquiry to develop, implement and evaluate a sustainable and evidence-based programme of compassion awareness training through engaging with a diverse group of health professionals and support staff; an evaluation of a ‘train the trainers’ approach; and an evaluation of ‘compassion lead’ roles and a multi-modal compassion toolkit. The project team included academics from two universities and one medical school, NHS staff from three separate organisations and service users. The participants recruited to the study included doctors, nurses, receptionists, chaplains and others working in close contact with service users from within four NHS organisations in the South East of England. The main findings from the project using thematic analysis from participant focus groups and interviews identified project enablers and inhibitors, the value of project resources, and shifts in perspectives. Project conclusions highlighted the importance of effective senior-level support and organisational leadership in cultivating compassion within a healthcare organisation and the importance of the integration of compassion-promoting resources within existing staff development initiatives

    Glutamate and Synaptic Plasticity Systems and Smoking Behavior: Results from a Genetic Association Study

    Get PDF
    Smoking behavior is a multifactorial phenotype with significant heritability. Identifying the specific loci that influence smoking behavior could provide important etiological insights and facilitate the development of treatments to further reduce smoking related mortality. Although several studies pointed to different candidate genes for smoking, there is still a need for replication especially in samples from different countries. In the present study, we investigated whether 21 positive signals for smoking behavior from these studies are replicated in a sample of 531 blood donors from the Brazilian population. The polymorphisms were chosen based on their representativeness of different candidate biologic systems, strength of previous evidence, location and allele frequencies. By genotyping with the Sequenom MassARRAY iPLEX platform and subsequent statistical analysis using Plink software, we show that two of the SNPs studied, in the SLC1A2 (rs1083658) and ACTN1 (rs2268983) genes, were associated with smoking behavior in our study population. These genes are involved in crucial aspects of nicotine dependence, glutamate system and synaptic plasticity, and as such, are biologically plausible candidates that merit further molecular analyses so as to clarify their potential role in smoking behavior

    Structural and non-coding variants increase the diagnostic yield of clinical whole genome sequencing for rare diseases

    Get PDF
    Background Whole genome sequencing is increasingly being used for the diagnosis of patients with rare diseases. However, the diagnostic yields of many studies, particularly those conducted in a healthcare setting, are often disappointingly low, at 25–30%. This is in part because although entire genomes are sequenced, analysis is often confined to in silico gene panels or coding regions of the genome. Methods We undertook WGS on a cohort of 122 unrelated rare disease patients and their relatives (300 genomes) who had been pre-screened by gene panels or arrays. Patients were recruited from a broad spectrum of clinical specialties. We applied a bioinformatics pipeline that would allow comprehensive analysis of all variant types. We combined established bioinformatics tools for phenotypic and genomic analysis with our novel algorithms (SVRare, ALTSPLICE and GREEN-DB) to detect and annotate structural, splice site and non-coding variants. Results Our diagnostic yield was 43/122 cases (35%), although 47/122 cases (39%) were considered solved when considering novel candidate genes with supporting functional data into account. Structural, splice site and deep intronic variants contributed to 20/47 (43%) of our solved cases. Five genes that are novel, or were novel at the time of discovery, were identified, whilst a further three genes are putative novel disease genes with evidence of causality. We identified variants of uncertain significance in a further fourteen candidate genes. The phenotypic spectrum associated with RMND1 was expanded to include polymicrogyria. Two patients with secondary findings in FBN1 and KCNQ1 were confirmed to have previously unidentified Marfan and long QT syndromes, respectively, and were referred for further clinical interventions. Clinical diagnoses were changed in six patients and treatment adjustments made for eight individuals, which for five patients was considered life-saving. Conclusions Genome sequencing is increasingly being considered as a first-line genetic test in routine clinical settings and can make a substantial contribution to rapidly identifying a causal aetiology for many patients, shortening their diagnostic odyssey. We have demonstrated that structural, splice site and intronic variants make a significant contribution to diagnostic yield and that comprehensive analysis of the entire genome is essential to maximise the value of clinical genome sequencing

    Structural and non-coding variants increase the diagnostic yield of clinical whole genome sequencing for rare diseases

    Get PDF
    BACKGROUND: Whole genome sequencing is increasingly being used for the diagnosis of patients with rare diseases. However, the diagnostic yields of many studies, particularly those conducted in a healthcare setting, are often disappointingly low, at 25-30%. This is in part because although entire genomes are sequenced, analysis is often confined to in silico gene panels or coding regions of the genome.METHODS: We undertook WGS on a cohort of 122 unrelated rare disease patients and their relatives (300 genomes) who had been pre-screened by gene panels or arrays. Patients were recruited from a broad spectrum of clinical specialties. We applied a bioinformatics pipeline that would allow comprehensive analysis of all variant types. We combined established bioinformatics tools for phenotypic and genomic analysis with our novel algorithms (SVRare, ALTSPLICE and GREEN-DB) to detect and annotate structural, splice site and non-coding variants.RESULTS: Our diagnostic yield was 43/122 cases (35%), although 47/122 cases (39%) were considered solved when considering novel candidate genes with supporting functional data into account. Structural, splice site and deep intronic variants contributed to 20/47 (43%) of our solved cases. Five genes that are novel, or were novel at the time of discovery, were identified, whilst a further three genes are putative novel disease genes with evidence of causality. We identified variants of uncertain significance in a further fourteen candidate genes. The phenotypic spectrum associated with RMND1 was expanded to include polymicrogyria. Two patients with secondary findings in FBN1 and KCNQ1 were confirmed to have previously unidentified Marfan and long QT syndromes, respectively, and were referred for further clinical interventions. Clinical diagnoses were changed in six patients and treatment adjustments made for eight individuals, which for five patients was considered life-saving.CONCLUSIONS: Genome sequencing is increasingly being considered as a first-line genetic test in routine clinical settings and can make a substantial contribution to rapidly identifying a causal aetiology for many patients, shortening their diagnostic odyssey. We have demonstrated that structural, splice site and intronic variants make a significant contribution to diagnostic yield and that comprehensive analysis of the entire genome is essential to maximise the value of clinical genome sequencing.</p

    Physician privacy concerns when disclosing patient data for public health purposes during a pandemic influenza outbreak

    Get PDF
    Background: Privacy concerns by providers have been a barrier to disclosing patient information for public health\ud purposes. This is the case even for mandated notifiable disease reporting. In the context of a pandemic it has been\ud argued that the public good should supersede an individual’s right to privacy. The precise nature of these provider\ud privacy concerns, and whether they are diluted in the context of a pandemic are not known. Our objective was to\ud understand the privacy barriers which could potentially influence family physicians’ reporting of patient-level\ud surveillance data to public health agencies during the Fall 2009 pandemic H1N1 influenza outbreak.\ud Methods: Thirty seven family doctors participated in a series of five focus groups between October 29-31 2009.\ud They also completed a survey about the data they were willing to disclose to public health units. Descriptive\ud statistics were used to summarize the amount of patient detail the participants were willing to disclose, factors that\ud would facilitate data disclosure, and the consensus on those factors. The analysis of the qualitative data was based\ud on grounded theory.\ud Results: The family doctors were reluctant to disclose patient data to public health units. This was due to concerns\ud about the extent to which public health agencies are dependable to protect health information (trusting beliefs),\ud and the possibility of loss due to disclosing health information (risk beliefs). We identified six specific actions that\ud public health units can take which would affect these beliefs, and potentially increase the willingness to disclose\ud patient information for public health purposes.\ud Conclusions: The uncertainty surrounding a pandemic of a new strain of influenza has not changed the privacy\ud concerns of physicians about disclosing patient data. It is important to address these concerns to ensure reliable\ud reporting during future outbreaks.University of Ottawa Open Access Author Fun

    Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

    Get PDF
    The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group
    • …
    corecore