10,106 research outputs found

    Editorials

    Get PDF

    First Detection of Millimeter Dust Emission from Brown Dwarf Disks

    Full text link
    We report results from the first deep millimeter continuum survey targeting Brown Dwarfs (BDs). The survey led to the first detection of cold dust in the disks around two young BDs (CFHT-BD-Tau 4 and IC348 613), with deep JCMT and IRAM observations reaching flux levels of a few mJy. The dust masses are estimated to be a few Earth masses assuming the same dust opacities as usually applied to TTauri stars.Comment: 5 pages, accepted for ApJ

    Preliminary Results from an Experimental Assessment of a Natural Laminar Flow Design Method

    Get PDF
    A 5.2% scale semispan model of the new Common Research Model with Natural Laminar Flow (CRM-NLF) was tested in the National Transonic Facility (NTF) at the NASA Langley Research Center. The model was tested at transonic cruise flight conditions with Reynolds numbers based on mean aerodynamic chord ranging from 10 to 30 million. The goal of the test was to experimentally validate a new design method, referred to as Crossflow Attenuated NLF (CATNLF), which shapes airfoils to have pressure distributions that delay transition on wings with high sweep and Reynolds numbers. Additionally, the test aimed to characterize the NTF laminar flow testing capabilities, as well as establish best practices for laminar flow wind tunnel testing. Preliminary results regarding the first goal of validating the new design method are presented in this paper. Experimental data analyzed in this assessment include surface pressure data and transition images. The surface pressure data acquired during the test agree well with computational fluid dynamics (CFD) results. Transition images at a variety of Reynolds numbers and angles of attack are presented and compared to computational transition predictions. The experimental data are used to assess transition due to a turbulent attachment line, as well as crossflow and Tollmien-Schlichting modal instabilities. Preliminary results suggest the CATNLF design method is successful at delaying transition on wings with high sweep. Initial analysis of the transition front images showed transition Reynolds numbers that exceed historic experimental values at similar sweep angles. , section lif

    Efficient Bayesian inference for natural time series using ARFIMA processes

    Get PDF
    Many geophysical quantities, such as atmospheric temperature, water levels in rivers, and wind speeds, have shown evidence of long memory (LM). LM implies that these quantities experience non-trivial temporal memory, which potentially not only enhances their predictability, but also hampers the detection of externally forced trends. Thus, it is important to reliably identify whether or not a system exhibits LM. In this paper we present a modern and systematic approach to the inference of LM. We use the flexible autoregressive fractional integrated moving average (ARFIMA) model, which is widely used in time series analysis, and of increasing interest in climate science. Unlike most previous work on the inference of LM, which is frequentist in nature, we provide a systematic treatment of Bayesian inference. In particular, we provide a new approximate likelihood for efficient parameter inference, and show how nuisance parameters (e.g., short-memory effects) can be integrated over in order to focus on long-memory parameters and hypothesis testing more directly. We illustrate our new methodology on the Nile water level data and the central England temperature (CET) time series, with favorable comparison to the standard estimators. For CET we also extend our method to seasonal long memory

    Structure and distribution of the slope fish community in the vicinity of the sub-Antarctic Prince Edward Archipelago

    Get PDF
    Demersal fish community structure, distribution and trophic relationships on the slope (depth range 200–1500 m) of the sub-Antarctic Prince Edward Islands and surrounding sea rises were investigated during a pilot survey conducted in April 2001 onboard fishing vessel MV Iris. A total of 56 fish taxa were collected during the survey, of which 44 were identified to the species level, seven to the genus level and five to the family level. Among the identified taxa, 36 constituted new records for the area investigated. Total catch per unit effort (cpue) during the survey ranged from 1•1 to 241•2 individuals h 1. Both average fish diversity and total cpue positively correlated with trawling depth. Overall, mean sampling depth and near-bottom temperature explained 56% of total fish cpue. Hierarchal cluster analysis identified three distinct fish assemblages with pronounced dominant species. Major shifts in fish community composition occurred at 500–600 m and 800–900 m depth strata and could probably be a result of physical and biological vertical zonation. Analysis of the diet of selected fish species showed that they were generalist feeders, consuming predominantly pelagic, including epipelagic, meso- and benthopelagic, prey. Diets of six species and nitrogen stable isotope signatures of 22 species revealed that with a few exceptions most fishes occupied the fourth trophic level and were tertiary consumers. Wide variability in carbon isotopic signatures is discussed with respect to alternative, e.g. possible importance of high Antarctic and chemoautotrophic v. photoautotrophic sub-Antarctic primary production, organic matter sources at the base of deep-sea food webs

    Exploration Medical System Demonstration Project

    Get PDF
    A near-Earth Asteroid (NEA) mission will present significant new challenges including hazards to crew health created by exploring a beyond low earth orbit destination, traversing the terrain of asteroid surfaces, and the effects of variable gravity environments. Limited communications with ground-based personnel for diagnosis and consultation of medical events require increased crew autonomy when diagnosing conditions, creating treatment plans, and executing procedures. Scope: The Exploration Medical System Demonstration (EMSD) project will be a test bed on the International Space Station (ISS) to show an end-to-end medical system assisting the Crew Medical Officers (CMO) in optimizing medical care delivery and medical data management during a mission. NEA medical care challenges include resource and resupply constraints limiting the extent to which medical conditions can be treated, inability to evacuate to Earth during many mission phases, and rendering of medical care by a non-clinician. The system demonstrates the integration of medical technologies and medical informatics tools for managing evidence and decision making. Project Objectives: The objectives of the EMSD project are to: a) Reduce and possibly eliminate the time required for a crewmember and ground personnel to manage medical data from one application to another. b) Demonstrate crewmember's ability to access medical data/information via a software solution to assist/aid in the treatment of a medical condition. c) Develop a common data management architecture that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all crew health and life sciences activities. d) Develop a common data management architecture that allows for scalability, extensibility, and interoperability of data sources and data users. e) Lower total cost of ownership for development and sustainment of peripheral hardware and software that use EMSD for data management f) Provide better crew health via the reduction in crew errors, crew time, and ground time

    Detecting gravitational waves from test-mass bodies orbiting a Kerr black hole with P-approximant templates

    Full text link
    In this study we apply post-Newtonian (T-approximants) and resummed post-Newtonian (P-approximants) to the case of a test-particle in equatorial orbit around a Kerr black hole. We compare the two approximants by measuring their effectualness (i.e. larger overlaps with the exact signal), and faithfulness (i.e. smaller biases while measuring the parameters of the signal) with the exact (numerical) waveforms. We find that in the case of prograde orbits, T-approximant templates obtain an effectualness of ~0.99 for spins q < 0.75. For 0.75 < q < 0.95, the effectualness drops to about 0.82. The P-approximants achieve effectualness of > 0.99 for all spins up to q = 0.95. The bias in the estimation of parameters is much lower in the case of P-approximants than T-approximants. We find that P-approximants are both effectual and faithful and should be more effective than T-approximants as a detection template family when q > 0. For q < 0 both T- and P-approximants perform equally well so that either of them could be used as a detection template family. However, for parameter estimation, the P-approximant templates still outperforms the T-approximants.Comment: 11 Pages - 9 figures. Accepted for publication. Proceedings of GWDAW 9. Special edition of Classical and Quantum Gravit
    • …
    corecore