53 research outputs found

    Identification of 45 New Neutron-Rich Isotopes Produced by In-Flight Fission of a 238U Beam at 345 MeV/nucleon

    Full text link
    A search for new isotopes using in-flight fission of a 345 MeV/nucleon 238U beam has been carried out at the RI Beam Factory at the RIKEN Nishina Center. Fission fragments were analyzed and identified by using the superconducting in-flight separator BigRIPS. We observed 45 new neutron-rich isotopes: 71Mn, 73,74Fe, 76Co, 79Ni, 81,82Cu, 84,85Zn, 87Ga, 90Ge, 95Se, 98Br, 101Kr, 103Rb, 106,107Sr, 108,109Y, 111,112Zr, 114,115Nb, 115,116,117Mo, 119,120Tc, 121,122,123,124Ru, 123,124,125,126Rh, 127,128Pd, 133Cd, 138Sn, 140Sb, 143Te, 145I, 148Xe, and 152Ba

    Instant estimation of rice yield using ground-based RGB images and its potential applicability to UAV

    Get PDF
    Rice (Oryza sativa L.) is one of the most important cereals, which provides 20% of the world’s food energy. However, its productivity is poorly assessed especially in the global South. Here, we provide a first study to perform a deep learning-based approach for instantaneously estimating rice yield using RGB images. During ripening stage and at harvest, over 22,000 digital images were captured vertically downwards over the rice canopy from a distance of 0.8 to 0.9m at 4,820 harvesting plots having the yield of 0.1 to 16.1 t ha-1 across six countries in Africa and Japan. A convolutional neural network (CNN) applied to these data at harvest predicted 68% variation in yield with a relative root mean square error (rRMSE) of 0.22. Even when the resolution of images was reduced (from 0.2 to 3.2cm pixel-1 of ground sampling distance), the model could predict 57% variation in yield, implying that this approach can be scaled by use of unmanned aerial vehicles. Our work offers low-cost, hands-on, and rapid approach for high throughput phenotyping, and can lead to impact assessment of productivity-enhancing interventions, detection of fields where these are needed to sustainably increase crop production

    Deep learning enables instant and versatile estimation of rice yield using ground-based RGB images

    Get PDF
    "AIの目"によるイネ収穫量の簡単・迅速推定. 京都大学プレスリリース. 2023-07-21.Rice (Oryza sativa L.) is one of the most important cereals, which provides 20% of the world’s food energy. However, its productivity is poorly assessed especially in the global South. Here, we provide a first study to perform a deep-learning-based approach for instantaneously estimating rice yield using red-green-blue images. During ripening stage and at harvest, over 22, 000 digital images were captured vertically downward over the rice canopy from a distance of 0.8 to 0.9 m at 4, 820 harvesting plots having the yield of 0.1 to 16.1 t·ha⁻¹ across 6 countries in Africa and Japan. A convolutional neural network applied to these data at harvest predicted 68% variation in yield with a relative root mean square error of 0.22. The developed model successfully detected genotypic difference and impact of agronomic interventions on yield in the independent dataset. The model also demonstrated robustness against the images acquired at different shooting angles up to 30° from right angle, diverse light environments, and shooting date during late ripening stage. Even when the resolution of images was reduced (from 0.2 to 3.2 cm·pixel−1 of ground sampling distance), the model could predict 57% variation in yield, implying that this approach can be scaled by the use of unmanned aerial vehicles. Our work offers low-cost, hands-on, and rapid approach for high-throughput phenotyping and can lead to impact assessment of productivity-enhancing interventions, detection of fields where these are needed to sustainably increase crop production, and yield forecast at several weeks before harvesting

    The Aqua-Planet Experiment (APE): CONTROL SST Simulation

    Get PDF
    Climate simulations by 16 atmospheric general circulation models (AGCMs) are compared on an aqua-planet, a water-covered Earth with prescribed sea surface temperature varying only in latitude. The idealised configuration is designed to expose differences in the circulation simulated by different models. Basic features of the aqua-planet climate are characterised by comparison with Earth. The models display a wide range of behaviour. The balanced component of the tropospheric mean flow, and mid-latitude eddy covariances subject to budget constraints, vary relatively little among the models. In contrast, differences in damping in the dynamical core strongly influence transient eddy amplitudes. Historical uncertainty in modelled lower stratospheric temperatures persists in APE.Aspects of the circulation generated more directly by interactions between the resolved fluid dynamics and parameterized moist processes vary greatly. The tropical Hadley circulation forms either a single or double inter-tropical convergence zone (ITCZ) at the equator, with large variations in mean precipitation. The equatorial wave spectrum shows a wide range of precipitation intensity and propagation characteristics. Kelvin mode-like eastward propagation with remarkably constant phase speed dominates in most models. Westward propagation, less dispersive than the equatorial Rossby modes, dominates in a few models or occurs within an eastward propagating envelope in others. The mean structure of the ITCZ is related to precipitation variability, consistent with previous studies.The aqua-planet global energy balance is unknown but the models produce a surprisingly large range of top of atmosphere global net flux, dominated by differences in shortwave reflection by clouds. A number of newly developed models, not optimised for Earth climate, contribute to this. Possible reasons for differences in the optimised models are discussed.The aqua-planet configuration is intended as one component of an experimental hierarchy used to evaluate AGCMs. This comparison does suggest that the range of model behaviour could be better understood and reduced in conjunction with Earth climate simulations. Controlled experimentation is required to explore individual model behavior and investigate convergence of the aqua-planet climate with increasing resolution

    Alcohol consumption is associated with an increased risk of erosive esophagitis and Barrett's epithelium in Japanese men

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evidence regarding the association between alcohol consumption and the gastro-esophageal reflux disease (GERD) spectrum has been conflicting. We examined the association between alcohol consumption and erosive esophagitis and Barrett's epithelium in Japanese men.</p> <p>Methods</p> <p>The study population comprised 463 men subjects who had undergone an upper endoscopy at the Gastroenterology Division of Yokohama City University Hospital between August 2005 and July 2006. The presence of erosive esophagitis and Barrett's epithelium was diagnosed based on the Los Angeles Classification and the Prague C and M Criteria, respectively. We divided the study population into four groups: never drinkers, light drinkers (less than 25.0 g of ethanol per day), moderate drinkers (25.0 to 50.0 g of ethanol per day), and heavy drinkers (more than 50.0 g of ethanol per day). A linear regression of the logistic regression analysis was used to analyze the dose-response trends.</p> <p>Results</p> <p>Compared with never drinkers, light drinkers (less than 25.0 g ethanol per day), moderate drinkers (25.0 to 50.0 g per day), and heavy drinkers (more than 50.0 g per day) had ORs for erosive esophagitis of 1.110 (95% CI: 0.553 – 2.228, p = 0.7688), 1.880 (95% CI: 1.015 – 3.484, p = 0.0445) and 1.988 (95% CI: 1.120 – 3.534, p = 0.0190), respectively. These groups had ORs for Barrett's epithelium of 1.278 (95% CI: 0.752 – 2.170, p = 0.3643), 1.458 (95% CI: 0.873 – 2.433, p = 0.1500), and 1.912 (95% CI: 1.185 – 3.086, p = 0.0079), respectively. The odds ratios/grams (alcohol)/day of dose response trends for erosive esophagitis and Barrett's epithelium were 1.015 (95% CI: 1.004–1.026, p = 0.0066) and 1.012 (95% CI: 1.003–1.021, p = 0.0079), respectively.</p> <p>Conclusion</p> <p>These findings suggest that alcohol consumption in Japanese men tends to be associated with an increased risk of erosive esophagitis and Barrett's epithelium.</p

    Comparison of warfarin sensitivity between rat and bird species

    Get PDF
    Scattering coumarin-derivative rodenticides in broad areas have caused primary- and secondary-poisoning incidents in non-target wild birds. In this study, we compared factors determining warfarin sensitivity between bird species and rats based on vitamin K 2,3-epoxide reductase (VKOR) kinetics, VKOR inhibition by warfarin and warfarin metabolism assays. In VKOR characterization, chickens and ostriches showed significantly lower enzymatic efficiencies than rats (one-sixth and one-third, respectively), suggesting bird species depend more on a non-VKOR vitamin K source. On the other hand, the inhibition constants (Ki) of VKOR for warfarin were significantly different between chickens and ostriches (113 ± 2.5 μM and 0.64 ± 0.39 μM, respectively). Interestingly, the ostrich Ki was similar to the values for rats (0.28 ± 0.09 μM). The Ki results reveal a surprising possibility that VKOR in some bird species are easily inhibited by warfarin. Warfarin metabolism assays also showed a large inter-species difference in bird species. Chickens and ostriches showed higher metabolic activity than that of rats, while mallards and owls showed only a slight ability to metabolize warfarin. In this study, we clarified the wide inter-species difference that exists among birds in xenobiotic metabolism and sensitivity to a rodenticide

    Concentrations and human health risk assessment of organochlorine pesticides in edible fish species from a Rift Valley lake-Lake Ziway, Ethiopia

    Get PDF
    Fish consumption is known to have several health benefits for humans. However, the accumulation of organic pollutants, like organochlorine pesticides (OCPs) could pose health hazards. Thus, OCPs in edible fish species (Oreochromis niloticus, Tilapia zillii, Carassius spp., and Clarias gariepinus) from Lake Ziway, an Ethiopian Rift Valley Lake were investigated to assess the potential human health hazards of these contaminants. Dichlorodiphenyltrichloroethanes (DDTs), hexachlorocyclohexanes (HCHs), chlordanes, and heptachlors were observed with Sigma OCPs concentration ranging from 1.41 to 63.8 ng g(-1) ww. DDTs were the predominant contaminants (0.9 to 61.9 ng g(-1) ww), followed by HCHs. The predominance of DDTs may be attributed to their current use in vector control and contamination from past usage. The estimated daily intakes (EDIs) of OCPs from all fish species were much lower than the acceptable daily intakes (ADIs), indicating that consumption of fish is at little risk to human health at present. However, the cancer risk estimates in the area of concern and the hazard ratios (HRs) of HCHs, DDTs, and heptachlors exceeded the threshold value of one, indicating daily exposure to these compounds is a potential concern. This may result in a lifetime cancer risk greater than of I in 10(6). (C) 2014 Elsevier Inc. All rights reserved

    Strain differences in cytochrome P450 mRNA and protein expression, and enzymatic activity among Sprague Dawley, Wistar, Brown Norway and Dark Agouti rats

    Get PDF
    Rat cytochrome P450 (CYP) exhibits inter-strain differences, but their analysis has been scattered across studies under different conditions. To identify these strain differences in CYP more comprehensively, mRNA expression, protein expression and metabolic activity among Wistar (WI), Sprague Dawley (SD), Dark Agouti (DA) and Brown Norway (BN) rats were compared. The mRNA level and enzymatic activity of CYP1A1 were highest in SD rats. The rank order of Cyp3a2 mRNA expression mirrored its protein expression, i.e., DA>BN>SD>WI, and was similar to the CYP3A2-dependent warfarin metabolic activity, i.e., DA>SD>BN>WI. These results suggest that the strain differences in CYP3A2 enzymatic activity are caused by differences in mRNA expression. Cyp2b1 mRNA levels, which were higher in DA rats, did not correlate with its protein expression or enzymatic activity. This suggests that the strain differences in enzymatic activity are not related to Cyp2b1 mRNA expression. In conclusion, WI rats tended to have the lowest CYP1A1, 2B1 and 3A2 mRNA expression, protein expression and enzymatic activity among the strains. In addition, SD rats had the highest CYP1A1 mRNA expression and activity, while DA rats had higher CYP2B1 and CYP3A2 mRNA and protein expression. These inter-strain differences in CYP could influence pharmacokinetic considerations in preclinical toxicological studies

    Cytochrome P450-mediated warfarin metabolic ability is not a critical determinant of warfarin sensitivity in avian species: in vitro assays in several birds and in vivo assays in chicken

    No full text
    Coumarin-derivative anticoagulant rodenticides used for rodent control are posing a serious risk to wild bird populations. For warfarin, a classic coumarin derivative, chickens have a high median lethal dose (LD50), whereas mammalian species generally have much lower LD50. Large interspecies differences in sensitivity to warfarin are to be expected. The authors previously reported substantial differences in warfarin metabolism among avian species; however, the actual in vivo pharmacokinetics have yet to be elucidated, even in the chicken. In the present study, the authors sought to provide an in-depth characterization of warfarin metabolism in birds using in vivo and in vitro approaches. A kinetic analysis of warfarin metabolism was performed using liver microsomes of 4 avian species, and the metabolic abilities of the chicken and crow were much higher in comparison with those of the mallard and ostrich. Analysis of in vivo metabolites from chickens showed that excretions predominantly consisted of 4′-hydroxywarfarin, which was consistent with the in vitro results. Pharmacokinetic analysis suggested that chickens have an unexpectedly long half-life despite showing high metabolic ability in vitro. The results suggest that the half-life of warfarin in other bird species could be longer than that in the chicken and that warfarin metabolism may not be a critical determinant of species differences with respect to warfarin sensitivit

    Cytochrome P450-mediated warfarin metabolic ability is not a critical determinant of warfarin sensitivity in avian species: In vitro assays in several birds and in vivo assays in chicken

    Get PDF
    Coumarin-derivative anticoagulant rodenticides used for rodent control are posing a serious risk to wild bird populations. For warfarin, a classic coumarin derivative, chickens have a high median lethal dose (LD50), whereas mammalian species generally have much lower LD50. Large interspecies differences in sensitivity to warfarin are to be expected. The authors previously reported substantial differences in warfarin metabolism among avian species; however, the actual in vivo pharmacokinetics have yet to be elucidated, even in the chicken. In the present study, the authors sought to provide an in-depth characterization of warfarin metabolism in birds using in vivo and in vitro approaches. A kinetic analysis of warfarin metabolism was performed using liver microsomes of 4 avian species, and the metabolic abilities of the chicken and crow were much higher in comparison with those of the mallard and ostrich. Analysis of in vivo metabolites from chickens showed that excretions predominantly consisted of 4-hydroxywarfarin, which was consistent with the in vitro results. Pharmacokinetic analysis suggested that chickens have an unexpectedly long half-life despite showing high metabolic ability in vitro. The results suggest that the half-life of warfarin in other bird species could be longer than that in the chicken and that warfarin metabolism may not be a critical determinant of species differences with respect to warfarin sensitivity. Environ Toxicol Chem 2015;34:2328-2334. (c) 2015 SETA
    corecore