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RESEARCH ARTICLE

Deep Learning Enables Instant and Versatile 
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RGB Images
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Rice (Oryza sativa L.) is one of the most important cereals, which provides 20% of the world’s food energy. 
However, its productivity is poorly assessed especially in the global South. Here, we provide a first study to 
perform a deep-learning-based approach for instantaneously estimating rice yield using red-green-
blue images. During ripening stage and at harvest, over 22,000 digital images were captured vertically 
downward over the rice canopy from a distance of 0.8 to 0.9 m at 4,820 harvesting plots having the yield 
of 0.1 to 16.1 t·ha−1 across 6 countries in Africa and Japan. A convolutional neural network applied to 
these data at harvest predicted 68% variation in yield with a relative root mean square error of 0.22. The 
developed model successfully detected genotypic difference and impact of agronomic interventions on 
yield in the independent dataset. The model also demonstrated robustness against the images acquired 
at different shooting angles up to 30° from right angle, diverse light environments, and shooting date 
during late ripening stage. Even when the resolution of images was reduced (from 0.2 to 3.2 cm·pixel−1 of 
ground sampling distance), the model could predict 57% variation in yield, implying that this approach 
can be scaled by the use of unmanned aerial vehicles. Our work offers low-cost, hands-on, and rapid 
approach for high-throughput phenotyping and can lead to impact assessment of productivity-enhancing 
interventions, detection of fields where these are needed to sustainably increase crop production, and 
yield forecast at several weeks before harvesting.
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Introduction

The global demand for staple crop products is expected to 
increase by 60% by 2050 because of the increased population, 
per capita income growth, and use of biofuels [1]. As the con-
version of carbon-rich and natural ecosystems to cropland 
exacerbates climate change and biodiversity loss, sustainable 
intensification of the existing cropland is needed to meet this 
estimated future demand by reducing yield gap and negative 
environmental impacts [2,3]. Despite the importance of these 
goals, crop productivity is poorly assessed, especially in the 
global South, where there is need to monitor agricultural pro-
ductivity and evaluate the impact of productivity-enhancing 
interventions [4]. There are 3 well-known approaches for assess-
ing crop yield, which include self-reporting, crop cutting, and 
remote sensing. However, self-reported data from smallholder 
farmers are often inaccurate [5]. Crop cut, wherein a subsection 
of a plot is physically harvested, is time- and labor-consuming 
and difficult to scale to large areas with financial limitations. 
Remote sensing technologies such as satellites and unmanned 
aerial vehicles (UAVs) with specialized sensors have the capa-
bility to assess the crop productivity at scale, but they have not 
been fully utilized especially in the global South. The absence 
of reliable data on agriculture statistics is a serious constraint 
for both agricultural research and policy.

With recent advancement in computational technology, 
ground-based images captured by low-cost devices together 
with so called “machine learning” approaches have received 
great interest. Machine learning technology is one of the most 
remarkable innovations in the last decade [6,7]. Deep learning 
is categorized as supervised machine learning and mainly con-
sists of convolutional neural network (CNN). A remarkable 
feature of CNN is its capability for image analysis. It has already 
been applied in various situations, which include language 
translation [8], protein structure prediction [9], board games 
[10], and agriculture [11,12]. Developing a practical CNN 
model requires a large-scale combination of images and super-
vising data. The desirable target objects or crop characteristics 
could be those that are relatively easy to be visually evaluated 
for massive data collection. For these reasons, many earlier 
studies applying CNNs to agriculture focused on the classifica-
tion of crop biotic [13–15] and abiotic stresses [16], and esti-
mation of crop-growth-related traits such as biomass [17–20], 
leaf area index [21], grain number [22], and panicle density 
[23,24]. Recently, some studies demonstrated the direct estima-
tion of crop growth status including yield in specific growth 
environments and cultivars [25,26]. However, to the best of our 
knowledge, no study has achieved the versatile estimation of 
crop yield covering wide range of genotypic and environmental 
diversity based on CNNs.

This study focuses on rice, which is by far the most impor-
tant among the big 3 cereals in terms of human consumption 
in low- and lower-middle income countries and is mainly cul-
tivated by smallholder farmers [27]. We established a database 
of ground-based digital images of rice taken during the ripening 
stage and at harvest, and the corresponding yields were col-
lected from 7 countries using a standardized data collection 
procedure. We then developed a CNN model that covered a 
wide range of yield levels, rice growing environments, cultivars, 
and crop management practices, such as crop establishment 
methods and fertilizer management. We assessed the robustness 
of the model under various conditions that potentially affected 

the yield estimation. We demonstrate that rice yield can be rap-
idly and effectively estimated at a low cost in diverse light envi-
ronments at harvest and during the late ripening stage, without 
labor-intensive crop cuts or knowledge-intensive remote sens-
ing technologies.

Materials and Methods

Construction of database for rice canopy image and 
rough grain yield
Field campaigns were conducted in 2019 and 2020 at 20 locations 
in 7 countries (Côte d'Ivoire, Senegal, Japan, Kenya, Madagascar, 
Nigeria, and Tanzania). Data on rice growth traits and digital 
images were collected in seed production plots and experimental 
fields at research stations and farmers’ fields (Table S1). At matu-
rity, the red-green-blue (RGB) images were captured vertically 
downward over the rice canopy from a distance of 0.8 to 0.9 m 
using a digital camera (Fig. S1A). The camera was set to auto-
matic mode. The focal length and aspect ratio were set to 28 mm 
and 4:3 or 16:9, respectively. All the images were saved as jpg 
files. The digital cameras used in this study are listed in Table S1. 
The rice canopy images covered 1 m2, which correspond to the 
harvesting area proposed by Food and Agriculture Organization 
and used by Japan for agricultural statistics [28]. Rough grain 
yield that contained filled and unfilled grains was measured at 
the corresponding plot or larger plots, where yield data were 
collected on the basis of field experiments (Table S1). Rice yields 
were reported as 14% moisture content. The aboveground total 
dry weight and filled grain weight were also recorded in most 
studies, but not used for the CNN-based estimation because of 
the lack of data in some cases. Rice yield level, rice production 
system, rice cultivar, and key crop management practices are 
shown in Table S1. The database consists of 8 categories, as pre-
sented in Fig. 1C. For most of the training, validation, and test 
data, a single image per plot was recorded. These 3 categories are 
the main part of the database and randomly split by a ratio of 
5:1:1. After splitting the data, the images categorized in the train-
ing data were augmented for 4-fold by flipping horizontally, 
vertically, and their combination, which resulted in 17,764 
images for training data. For panicle removal, angle, shooting 
date (see the following sections), and prediction data, we used 5 
replicated images per plot. These 5 images were recorded by 
swaying the camera by 1 to 2 cm horizontally. The prediction 
data consisted of the dataset collected at Moshi (3.45S, 37.38E), 
Tanzania, and at Tokyo (35.41N, 139.29E), Japan, where the data 
were not included in any other categories. For the time-of-day 
data, the sequential shooting of the canopy images was con-
ducted using a fixed camera. In total, 4,820 yield data and 22,067 
images of 462 rice cultivars were used in this study (Fig. 1C and 
Table S2).

Panicle removal and experiments for  
robustness evaluation
The panicle removal experiment was conducted at Kyoto (35.2N, 
135.47E) and Tsukuba (36.03N, 140.04E), Japan. The 5 rep-
licated canopy images were acquired for the plot to be har-
vested. Two panicles per hill at the random position of the 
canopy were removed, and then 5 images were acquired. The 
grain weight from the collected panicles was measured sep-
arately. By repeating this process until all the panicles were 
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removed from the harvesting plot, the series of images with 
gradually decreased panicle number and the corresponding 
yield were obtained. The dataset at Tsukuba was included for 

the training, validation, and test data, and the dataset at Kyoto 
was used to evaluate the impact of canopy removal on the 
yield estimation.

Japan
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7 countries
20 locations
462 cultivars
4820 plot

Max: 16.1 t·ha−1

Min: 0.1 t·ha−1

Ave: 5.8 t·ha−1

Category Harvested plot Image no.
Training 3,381 17,764

Validation 661 697
Test

Panicle removal
654 689
10* 50

Angle 25 1,000
Time of day 1 114

Shooting date 41 1,518

Prediction Prediction 47 235

Total 4,820 22,067

Development
and evaluation

Robustness

Fig. 1. The global database of the rice canopy image and corresponding rough grain yield. (A) Bar plot depicting the frequency distribution of observed rough grain yield in the 
database collected at 7 countries. (B) Pie chart of the dataset composition of 7 countries with the average rough grain yield in each country. (C) Tabular representation of the 
dataset classified into 3 major parts: development and evaluation, robustness, and prediction. For the subcategories, the training and validation datasets are directly used to 
develop the model. The test and panicle removal datasets were used to evaluated the accuracy and characteristics of the model. For details of angle, time of day, and shooting 
date, please refer to the main text. The prediction dataset consists of the data at Tanzania and Japan (Tokyo University of Agriculture and Technology), which are not included 
to any other categories. Asterisk indicates that 10 different yield data were generated for single plot of cv. Koshihikari at Kyoto, Japan by the sequential panicle removal. 
(D and E) Images of the rice canopy showing the highest (D) and the lowest (E) rough grain yield, which is collected in Senegal and Madagascar, respectively.
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The angle changing experiment was conducted at M’bé 
(7.87N, 5.11W), Côte d'Ivoire. The curved rail with a diameter 
of 1.8 m was fixed above the canopy to be harvested. By shifting 
the position of the camera on the rail, the image from the various 
depression angles were shot with the constant center of the image. 
The depression angles were set to 20°, 30°, 40°, 50°, 60°, 70°, 80°, 
and 90° (control). The data for angle changing experiment were 
collected for 25 harvested plots. The day time experiment was 
conducted at Kyoto, Japan. HykeCam SP2 (Hyke Inc., Japan) was 
fixed above the canopy of cv. Koshihikari and Takanari. The can-
opy images were automatically recorded every 30 min 5 days 
before the date of harvest for Koshihikari and 11 days before 
harvest for Takanari. After finishing the record, the plot was har-
vested by the common protocol with other experiments. The data 
of Takanari were used for the model development, and the data 
of Koshihikari were used for the time-of-day analysis.

The shooting date experiment was conducted at M’bé, Côte 
d'Ivoire and Marovoay, Madagascar. At M’bé, the 22 cultivars 
grown in 34 plots in total were used. The canopy images of these 
plots were acquired once a week from 1 to 4 weeks after 50% 
heading (WAH), 2 days and 1 day before harvest, and at harvest. 
Only the images taken on 2 days and 1 day before harvest were 
used for model development, while the others were used for the 
shooting date analysis. After the final image records, the rice plants 
were harvested using a common protocol. At Marovoay, the can-
opy images of 7 plots were recorded from 2 days before 14 days 
after 50% heading. Six images were taken every 10 min from 1200 
to 1250 h and were used for the shooting date analysis.

Image processing and development of CNN model
The RGB images of the rice canopy were recorded with an 
aspect ratio of 4:3 or 16:9. For the images recorded at 16:9, the 
edge of the long side was trimmed to a ratio of 4:3. The images 
were then resized to 600 × 450 pixels for recording in the data-
base. A bilinear algorithm was used to resize the images. This 
resize was to eliminate the difference in pixel sizes of images 
from various cameras, while keeping the aspect ratio and ground 
sampling distance (GSD). The images used for the analyses have 
the GSD of 0.2 cm·pixel−1. The images were again resized to a 
square of 512 × 512 pixels in 8-bit PNG format as inputs for 
the CNN model. The brightness values of each channel of RGB 
were divided by 255 to scale from 0 to 1. These values were then 
standardized using the mean and variance calculated from all 
images categorized in the training dataset. The mean and var-
iance of the RGB channel for the training dataset were [R, G, 
B] = [0.490, 0.488, 0.281] and [0.230, 0.232, 0.182], respectively. 
The structure of the CNN was developed by Neural Network 
Console software version 1.5 (Sony Network Communications 
Inc., Japan, https://dl.sony.com/). The Neural Network Console 
is a graphical user interface (GUI)-based software for Windows 
OS to design the structure of CNN and perform the training 
of the model. The database of the RGB images and rough grain 
yield was imported to the Neural Network Console, and the 
optimal structure showing the lowest validation error was 
determined by the CNN structural search function of the soft-
ware. During the structural search, the loss function and opti-
mizer were defined by the mean absolute error and Adam 
optimizer, respectively. The batch size, learning rate, and epoch 
number were set to 32, 0.001, and 50, respectively. The deter-
mined CNN structure (Fig. S2), loss function, and optimizer 
were then deployed using Python language (version 3.7) with 
PyTorch framework (version 1.7). The optimal learning rate and 

batch size were determined by changing the combination of 
these hyperparameters. Batch sizes of 16, 32, 64, and 128, and 
learning rates of 0.0001, 0.0002, 0.0005, 0.0008, and 0.001 
were combined, and the learning process was replicated 10 
times for each combination. The epoch number was set to 100, 
and the learning process was conducted by minimizing the loss 
of estimated and observed yields in the training dataset. The 
validation loss was also calculated for every epoch, and the 
model showing the least loss for validation was recorded. The 
relative root mean square error (rRMSE) for the test dataset 
was calculated for models with all combinations of the hyper-
parameters and averaged across 10 replications. The best com-
bination of batch size and learning rate was determined, and 
the recorded model was used in the present study.

To evaluate the model accuracy with the images of lower res-
olutions, we additionally developed the sets of training, valida-
tion, and test images with GSD of 0.4, 0.8, 1.6, and 3.2 cm·pixel−1. 
The CNN models were trained using images having these lower 
resolutions. The framework, optimizer, and the epoch number 
were identical with the establishment of the default model. On 
the basis of the optimization for the default model, the batch size 
and learning rate were set to 32 and 0.0001, respectively. The 
learning process was replicated 5 times for each GSD condition. 
The validation loss was also calculated for every epoch, and the 
model showing the least loss for validation was recorded. The R2 
value for validation and test dataset was calculated for each 
selected model and averaged across 5 replications. The altitude 
of the UAV and the single image footprint that gives the specific 
GSD was calculated by assuming the camera spec with the focal 
length of 10 mm, an image sensor size of 1 inch (2.54 cm), and 
a pixel size of 20 megapixels.

Occlusion-based method to quantify the additive 
effect on the yield estimation
The occlusion-based method [29] was applied to visualize the 
spatial distribution of the additive effect on yield estimation. 
The image of the rice canopy with 450 × 600 pixels was partly 
masked by the gray square with a brightness of [R, G, B] = [0.5, 
0.5, 0.5]. The size of the gray square was 30 × 30 pixels. By 
shifting the position of the gray square by 30 pixels for both the 
row and column directions of the image array, 300 images were 
generated per original image (Fig. S5A and B). Each portion 
of the original image was covered by one of the images in a 
series of 300 images with a gray square. Then, the rough grain 
yield was estimated using the CNN model, and the subtraction 
against the estimation for the original image was calculated. 
These values overlapped with the original image as a heatmap 
(Fig. S5C).

Statistical analyses, data summarizing, and  
code availability
The 4,820 observations of rough grain yield data were summa-
rized by calculating the average, maximum, and minimum 
yields. The data were categorized according to the collected 
country, and the average yield in each country was calculated. 
The R2 and rRMSE were calculated to evaluate the model per-
formance in each analysis. The rRMSE is defined as follows:

(1)
1

y

√

1

n

∑n

k=1

(

fi−yi
)2
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where y is the average of the observed yield, n is the size of the 
data, and fi and yi are the individual estimations and observa-
tions of the yield. The t test and 2-way analysis of variance 
(ANOVA) were conducted for the prediction dataset collected 
in Japan and Tanzania, respectively. The rough grain yield for 
panicle removal, angle, shooting date, and prediction dataset 
was estimated with 5 replicated images per harvested plot and 
then averaged. The standard error of the 5 replicated estima-
tions was calculated in the panicle removal experiment. For the 
changing angle experiment, the first, second, and third quartiles 
were calculated for the deviation between the estimated and 
observed yields across 25 plots and displayed with their average, 
maximum, and minimum values as the box plot. For the day 
time experiment, the estimated yield for every 30 min was aver-
aged across successive 6 days, and the standard error was cal-
culated. Segmented linear regression was adopted to determine 
the relationship between days after 50% heading and the relative 
yield observed in the shooting date experiment. The data col-
lected at M’bé, Côte d'Ivoire:

and for the data collected at Marovoay, Madagascar:

were used, respectively. The parameters a and b are constant, 
y is the ratio between the observed and the final yield, and x is 
the date after 50% heading. The parameters c1 and c2 are the 
breaking points of the segments, and Eq. 3 represents the 3 
segmented regressions. Function ‘I’ is the step function, which 
is defined as follows:

For the dataset in Madagascar for the shooting date experiment, 
the 6 estimations from 1200 to 1250 h were averaged and 
defined as an estimation for a plot. The estimations at 7 har-
vested plots were then averaged, and the standard error was 
calculated. All analyses in the present study were conducted 
using Microsoft Excel (Microsoft, Redmond, WA, USA), Neural 
Network Console software (Sony Network Communications 
Inc., Japan), and Python language version 3.7 (http://www.
python.org) with PyTorch framework version 1.7 (https://
pytorch.org/). The code to run the developed CNN model is 
available at https://github.com/r1wtn/rice_yield_CNN.

Results

Database on rice canopy image and grain yield
The multinational dataset of rice canopy image and corre-
sponding rough and filled grain yields and aboveground dry 
weight was established with a standardized data collection pro-
cedure for 4,820 harvested plots and 22,067 images across 20 
locations in 7 countries (Fig. 1A, Fig. S1, and Tables S1 and S3). 
Côte d'Ivoire, Senegal, and Japan accounted for 56%, 32%, and 
5% of total plots, respectively (Fig. 1B). The dataset covers both 
lowland and upland rice production systems containing 462 
rice cultivars and includes 2 crop establishment methods 
(direct seeding and transplanting) (Table S2). N-P-K fertilizer 
application ranged from 0 to 200 kg of N·ha−1, 0 to 120 kg of 

P2O5·ha−1, and 0 to 120 kg of K2O·ha−1, respectively (Table S1). 
The observed rough grain yield ranged from 0.1 to 16.1 t·ha−1 
with an average of 5.8 t·ha−1 and showed a normal distribution 
(Fig. 1A). As rough and filled grain yields and aboveground 
dry weight were highly correlated each other (Fig. S3), further 
data analyses using the CNN model focused only on rough 
grain yield.

A CNN model to estimate rough grain yield from 
canopy image
The determined CNN structure had 5 convolutional layers in 
the main stream and the 4 convolutional layers in the branching 
stream (Fig. S2). The pooling layers included both of Average 
Pooling and Max Pooling. The rectified linear unit (ReLU) was 
mainly chosen as the activation function, but the exponential 
linear unit (ELU) and LeakyReLU were also used in some 
parts. In the head part of CNN, the information from the 2 
streams were fully connected, followed by the last ReLU layer 
to output the estimated yield. The total number of parameters 
of the structure was 41,017. The learning rate and batch size 
during the learning process were optimized with 10 replications 
and identified the best combination at 0.0001 and 32, respec-
tively, for the test dataset (Fig. S4). With this combination, the 
best model of the learning process was generated at an epoch 
of 61, and the model was used for all of the following analyses 
(Fig. 2A) , except for the test of greater GSD images. The devel-
oped CNN model could explain 69% and 68% of the variation 
in yield for validation and test data, respectively, with an rRMSE 
of 0.22 for both (Fig. 2B and C). The relationship between the 
observed and estimated yields fit well to the 1:1 line for both 
datasets. The deviation between the estimated and observed 
yields of individual cultivars in the test dataset was plotted 
against the number of harvested plots in the training dataset 
(Fig. 2D). The cultivars with more than 25 harvesting plot in 
the training dataset tended to have less than 1.5 t·ha−1 devia-
tion. The empirical relationships illustrated as upper and lower 
boundary curves in Fig. 2D indicate that increasing the number 
of plots by 10 times can reduce the error of the yield estimation 
by 50%.

The applicability of the CNN to the images with greater GSD 
was then evaluated by comparing the models developed by the 
various resolutions of the image dataset. Compared with the 
default model (GSD = 0.2 cm·pixel−1), the model based on 
the greater GSD showed the lower accuracy both with the val-
idation and test dataset (Fig. 3A). The R2 value for the test data-
set was, however, greater than 0.55 even when the model was 
trained by the images with a GSD of 3.2 cm·pixel−1 (Fig. 3B). 
When assuming the typical camera specs of UAV, this GSD 
corresponds with altitude of 134 m and single image footprint 
of 2.06 ha (Fig. 3A).

The accuracy of the default CNN model was further evalu-
ated using the prediction dataset. The observed yield of cv. 
Takanari was significantly greater than that of cv. Koshihikari 
(P < 0.01; Fig. 4A) in Tokyo, Japan. The CNN model success-
fully detected this cultivar difference in yield (P < 0.01; Fig. 
4B). In Tanzania, 4 different water managements were applied 
to 3 cultivars including cv. TXD 306, which was included solely 
in the prediction dataset. There were significant main effects 
of cultivar and water management on observed yield (Fig. 4C 
and E). The CNN model detected the cultivar difference across 
water management practices (Fig. 4D and F). There was significant 
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difference in both observed and estimated yield between IR 64 
and NERICA 1. While difference in observed yield between 
TXD 306 and others was significant, this was not the case for 
estimated yield. The model slightly failed to reach eightsta-
tistical significance for water management (P = 0.053; Fig. 
4F). This is due to the overestimation in aerobic treatment in 

NERICA 1, but the yield variation associated with water man-
agement practices was successfully predicted for other cultivars.

To understand how the CNN model reads the images and 
estimates rice yield, we used the occlusion-based visualization 
technique to estimate the additive effect on yield estimation 
[27]. Briefly, the specific part of the image was masked by a gray 
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square, and the yield estimation of the masked image was sub-
tracted from that of the original image. The calculated values 
can be interpreted as the additive effect of the masked region 
on the yield estimation and mapped to the original image with 
a color scale (Fig. S5). This analysis revealed that the regions 
containing many rice panicles have a positive effect, whereas 
the region with leaves, stems, or ground has a negative effect 
on yield estimation.

The importance of panicles for yield estimation was further 
validated using panicle removal experiment in Kyoto, Japan. Two 
panicles per hill were sequentially removed from the canopy, 
and the rough grain weight and canopy images were recorded 
for each sequence (Fig. 5A and B). The yield was estimated using 
the CNN model for each sequence of panicle removal. As more 
panicles were removed, the estimated yield were gradually 

reduced (Fig. 5C and D). When all panicles were removed, the 
CNN model predicted yield of 1.60 t·ha−1.

Robustness of the developed CNN model
The robustness of the CNN model to image quality was tested 
using the images taken (a) from different shooting angles, (b) 
at various times of day during the 5 days before harvest, and 
(c) on different shooting dates during the ripening stage. The 
shooting angle assumes human error, while the time of day 
reflects the changing natural environment causing the variation 
of the contrast or color balance of the image. The shooting date 
is important to assess when rice yield can be effectively pre-
dicted using our model during the ripening stage.

To determine the range of shooting angles acceptable for 
the developed CNN model, we estimated rice yield using images 
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acquired from 8 shooting angles [in 10° increments from 20° 
to 90° (control)] in M’bé, Côte d'Ivoire (Fig. 6A and B). The 
deviation between the estimated and observed yields was aver-
aged across 25 harvested plots at each angle. The deviation ranged 
from −3.7 to 2.4 t·ha−1 when the depression angle was 20° (Fig. 
6C). The deviation decreased with an increase in the depression 
angle. When the outlier was excluded, the ranges of the devia-
tion were between −0.45 and 2.44 t·ha−1 at 60°, which was com-
parable with that at 90° (control). The estimation accuracy 
analysis showed that greater depression angles resulted in better 
estimation accuracy (Fig. S6). When the depression angle was 
greater than 60°, the R2 and rRMSE calculated between the 
estimated and observed yields ranged from 0.435 to 0.493 and 
0.180 to 0.219, respectively.

The image of the rice canopy was captured by a fixed-point 
camera every 30 min for 5 successive days before and at harvest 
in Kyoto, Japan (Fig. 6D and Fig. S7). The images at 0600 and 
1400 h on 29 August 2020, having a different color balance and 
contrast, are shown as an example of a clear sunny day (Fig. 6E). 

Despite such variations in light environments, the CNN model 
provided stable outputs throughout the daytime with a slight 
overestimation (Fig. 6F).

To assess from when the CNN model can predict rice yield 
during ripening stage, we took the canopy image once a week 
after 50% heading until the harvest for 22 cultivars in M’bé, Côte 
d'Ivoire. The yield estimated in the early ripening stage tended 
to be lower than the observed yield at harvest, whereas such a 
trend was not observed with the yield estimated at the later 
ripening stage (Fig. 7A). This indicates that the model recog-
nizes mature panicles (Fig. 5 and Fig. S5) but not the immature 
panicles. When the data from 22 cultivars were pooled, the ratio 
of the estimated yield to the observed yield ranged from 0.3 to 
0.6 at just after 50% heading, and the y intercept of the seg-
mented regression was 0.517. The ratio increased linearly during 
ripening. The relationship reached a plateau at approximately 
4 WAH (Fig. 7B). A similar trend was also observed in Madagascar 
(Fig. S8), while the relative yield plateaued within 2 WAH. In 
M’bé, Côte d'Ivoire, the R2 between the estimated yield during 
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2 to 4 WAH and the observed yield ranged from 0.370 to 0.410 
and was lower than that between the estimated yield at harvest 
and observed yield (Fig. 7C). The rRMSE between the estimated 

yield after 3 WAH and the observed yield ranged from 0.193 to 
0.196 and was similar to that between the estimated yield at 
harvest and the observed yield.
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Fig. 6. The effect of the depression angle and time of the day on the yield estimation. (A) Schematic illustration of the protocol to take the canopy image with various depression 
angles. The digital camera was sided on the rail above the rice canopy to change the depression angle with the same rice canopy. The image at each angle was taken 5 times 
with the random shift. (B) The examples of the canopy image taken from 20° and 90° of depression angle. (C) Boxplot of the relative error of the estimated to the observed 
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Discussion

This is the first study to develop a versatile CNN model to pre-
dict rice yield accurately only by using ground-based RGB 
images. In the previous attempts [25,26], the application of the 
CNN model was tested in the specific growing environments 
and cultivars. Our model was able to estimate rice yield with 
satisfactory precision in the existing most comprehensive and 

international dataset in terms of the growing environments, 
management practices, number of cultivars, camera angles, and 
time of days . The accuracy of estimation in the test dataset was 
comparable to or even higher than those shown in earlier stud-
ies that used satellite data, or in combination with other data 
and models, or in UAVs equipped with various sensors for 
estimating crop-growth-related traits such as aboveground 
biomass and leaf area index, or in indirectly predicting crop 
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yield in farmers’ fields [26,30–36]. Furthermore, in this study, 
the accuracy was evaluated using an independent prediction 
dataset, which was rarely tested in the earlier studies. In the 
prediction dataset, the CNN model successfully detected the 
cultivar difference in yield in 2 locations. However, the model 
could not detect yield difference between cv. TXD 306 and 
other 2 cultivars. This might be because TXD 306 was not 
included in the training and validation dataset. As shown in 
Fig. 2, increased data for given cultivar in the training dataset 
can result in improved model accuracy. In addition, our model 
detected yield difference among water management treatments 
except for one cultivar (cv. NERICA 1) in Tanzania. The reason 
for the exception in NERICA 1 is unknown and requires atten-
tion in future study.

Dry-weight-based evaluation of the rough grain yield needs 
at least 48 to 72 h oven-drying [28]. In addition to that, crop 
cut, threshing, and other processes require additional time and 
labor inputs. In contrast with this conventional method, the 
CNN-based estimation is instantaneous, and shooting an image 
requires a few seconds. Combined with the successful detection 
of the yield difference among cultivars and water management 
practices, our model can be applied to the high-throughput 
phenotyping for on-station agronomic experiments.

Our analyses showed the negative relationship between the 
model accuracy and GSD of the images used for the model devel-
opment. This was because the lower resolutions led to the loss 
of the leaf and panicle architecture (Fig. 3C and D). However, 
the CNN model trained with the images of GSD of 3.2 cm·pixel−1 
still shows the sufficient estimation accuracy (Fig. 3A and B). 
This GSD level is easily achieved by the UAV altitude greater 
than 100 m, if the commercial RGB camera is used. These results 
suggest that the CNN model can potentially use the images cap-
tured by the UAV for yield estimation. The CNN-based estima-
tion of rice yield and its spatial variation at field level can be a 
powerful solution for monitoring the rice productivity in the 
regional scale in the future.

The unknown conditions causing the poor or moderate esti-
mations of the CNN model should always be assumed when 
considering the scale and diversity of on-farm rice cropping 
systems globally. For instance, the dataset does not include the 
canopy affected by severe lodging, pests, insects, weeds, or abi-
otic stresses such as heat, drought, and flooding. Most of the 
data are from on-station irrigated lowland rice fields with rel-
atively higher yields, and data from farmers’ fields are limited. 
Thus, further research should especially focus on low-yielding 
and rained environments, and assessment of the potential use 
of the model for stressed or injured rice plants is warranted. 
The most practical solution to adapt the model to these condi-
tions would be to add these new data to the database and 
develop a new model. The results in Fig. 2D suggest that better 
accuracy can be achieved with more harvesting plots, indicat-
ing the extensibility of the CNN model. As a criterion, 25 har-
vesting plots are needed for adaptation to new conditions with 
practical accuracy (error < 1.5 t·ha−1), which should be vali-
dated for developing a sampling framework for improving and 
adapting the model to new conditions.

The object detection algorithm based on CNN enabled to 
detect panicles of rice [23] and wheat [24] and could offer a 
potential approach for indirect yield estimation. However, it 
is well known that other yield components such as number of 
spikelets per panicle interact with panicles and strongly affect 
rice yield [37]. Unless the models for predicting other yield 

components are not developed, the model for detecting pan-
icles would not be useful for the accurate yield estimation. On 
the basis of the panicle removal experiment (Fig. 5) and the 
occlusion-based method for visualizing the distribution of the 
additive effect (Fig. S5), our CNN model also autonomously 
learned the contribution of panicles to yield only by the rela-
tionships between input canopy images and the observed 
yield. There are several reasons for the overestimated yield of 
the images after removing panicles. First, apart from the exist-
ence of panicles, information about the background canopy 
may have also been utilized for yield estimation. Second, as 
images on the immature rice canopy without panicles at har-
vest were not included in training and validation dataset, the 
CNN model might not have been able to predict yield well. 
Third, as our CNN model was developed using plots having 
relatively high yield, yield prediction at lower yielding condi-
tions could have been less accurate. Although it is difficult to 
quantify, our model may capture the feature of background 
canopy, such as the amount of leaves, planting density, or stem 
size for yield estimation (Fig. 5C and D and Fig. S5). It was 
also supported by the positive value of the estimation yield 
for the images taken at around 50% heading date when the 
panicles were immature (Fig. 7A and B and Fig. S8). Capturing 
the whole part of the rice canopy may lead to the stable and 
quantitative estimation of yield because the accumulation of 
aboveground dry weight is tightly linked to the yield forma-
tion (Fig. S3).

The robustness of the CNN model to image quality is cru-
cial because the image is not necessarily acquired under opti-
mal rice growing conditions. On the basis of our assessment 
of the robustness of the model, the results suggest that (a) the 
model can be applied to the depression angles of the camera 
from 60° to 120° (Fig. 6C), (b) the model output is slightly 
affected by the changing light intensity without any reference 
board or color checker (Fig. 6F), and (c) the model with images 
acquired at 3 WAH or later has moderate prediction accuracy 
for yield forecasting before the harvest (Fig. 7). In particular, 
yield forecasting has great potential benefits in terms of field 
management, marketing, distribution, and policy decisions. 
The yield was estimated earlier without underestimation in 
Madagascar (i.e., after 2WAH) than Côte d'Ivoire. The reason 
for such difference between the 2 locations is not known, but 
it may be combined effect of various factors such as cultivar- 
specific dynamics of grain filling, growing environment, soil 
fertility, and water management, and, therefore, further studies 
are warranted.

The CNN structure used in this study has several convolu-
tional layers (Fig. S2) and is much smaller than the CNN used 
in the previous study for rice yield estimation [26] or repre-
sentative structures for image recognition [38]. This implies 
that the developed model can be easily transferred to mobile 
devices such as smartphones. The model does not require any 
type of color checker. It can accept the depression angle of the 
image from 60° to 120° at any time of the day, at 3 WAH or 
later, for shooting the canopy image. The model having the 
sufficient accuracy could be developed with the images of 
lower resolution, and our approach can be potentially com-
bined with the UAV-based imagery. The present study leads 
to the high-throughput phenotyping, impact assessment of 
productivity-enhancing interventions, and identifying fields 
where these are needed to sustainably increase crop produc-
tion [39].
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