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Rice (Oryza sativa L.) is one of the most important cereals, which provides 20% of the world’s food 
energy. However, its productivity is poorly assessed especially in the global South. Here, we provide a 
first study to perform a deep learning-based approach for instantaneously estimating rice yield using 
RGB images. During ripening stage and at harvest, over 22,000 digital images were captured vertically 
downwards over the rice canopy from a distance of 0.8 to 0.9 m at 4,820 harvesting plots having the yield 
of 0.1 to 16.1 t ha-1 across six countries in Africa and Japan. A convolutional neural network (CNN) 
applied to these data at harvest predicted 68% variation in yield with a relative root mean square error 
(rRMSE) of 0.22. Even when the resolution of images was reduced (from 0.2 to 3.2 cm pixel-1 of ground 
sampling distance), the model could predict 57% variation in yield, implying that this approach can be 
scaled by use of unmanned aerial vehicles. Our work offers low-cost, hands-on, and rapid approach for 
high throughput phenotyping, and can lead to impact assessment of productivity-enhancing interventions, 
detection of fields where these are needed to sustainably increase crop production.
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Introduction

The global demand for staple crop products is expected 
to increase by 60% by 2,050, because of the increased 
population, per capita income growth, and use of biofuels1）. 
As the conversion of carbon-rich and natural ecosystems 
to cropland exacerbates climate change and biodiversity 
loss, sustainable intensification of the existing cropland 
is needed to meet this estimated future demand by 
reducing yield gap as well as negative environmental 
impacts2,3）. Despite the importance of these goals, crop 
productivity is poorly assessed, especially in the global 
South, where there is need to monitor agricultural pro-
ductivity and evaluate the impact of productivity-	
enhancing interventions4）. There are three well-known 
approaches for assessing crop yield, which include self-	
reporting, crop cutting, and remote sensing. However, 
self-reported data from smallholder farmers are often 
inaccurate5） Crop cut, wherein a sub-section of a plot is 
physically harvested, is time- and labor-consuming, and 
difficult to scale to large areas with financial limitations. 
Remote sensing technologies such as satellites and 
unmanned aerial vehicles （UAVs） with specialized 
sensors have the capability to assess the crop productiv-
ity at scale, but they have not been fully utilized espe-
cially in the global South. The absence of reliable data on 
agriculture statistics is a serious constraint for both 
agricultural research and policy.

With recent advancement in computational technol-
ogy, ground-based images captured by low-cost devices 
together with so called “machine learning” approaches 
have received great interest. Machine learning technol-
ogy is one of the most remarkable innovations in the last 
decade6,7）. Deep learning is categorized as supervised 
machine learning and mainly consists of convolutional 
neural network （CNN）. A remarkable feature of CNN is 
its capability for image analysis. It has already been 
applied in various situations, which include language 
translation8）, protein structure prediction9）, board games10）, 
and agriculture11,12）. Developing a practical CNN model 
requires a large-scale combination of images and super-
vising data. The desirable target objects or crop charac-
teristics could be those that are relatively easy to be 
visually evaluated for massive data collection. For these 
reasons, many earlier studies applying CNNs to agricul-
ture focused on the classification of crop biotic13-15） and 
abiotic stresses16）, and estimation of crop growth-related 
traits such as biomass17-20）, leaf area index21）, grain num-
ber22）, and panicle density23,24）. Recently, some studies 

demonstrated the direct estimation of crop growth sta-
tus including yield in specific growth environments and 
cultivars25,26）. However, to the best of our knowledge, no 
study has achieved the versatile estimation of crop yield 
covering wide range of genotypic and environmental 
diversity based on CNNs.

This study focuses on rice, which is by far the most 
important among the big three cereals in terms of 
human consumption in low- and lower-middle income 
countries and is mainly cultivated by smallholder farm-
ers27）. We established a database of ground-based digital 
images of rice taken during the ripening stage and at 
harvest, and the corresponding yields were collected 
from seven countries using a standardized data collec-
tion procedure. We then developed a CNN model that 
covered a wide range of yield levels, rice growing envi-
ronments, cultivars, and crop management practices, 
such as crop establishment methods and fertilizer man-
agement. We assessed the robustness of the model 
under various conditions which potentially affected the 
yield estimation. We demonstrate that rice yield can be 
rapidly and effectively estimated at a low cost in diverse 
light environments at harvest and during the late ripen-
ing stage, without labor-intensive crop cuts or knowl-
edge-intensive remote-sensing technologies.

Materials and Methods

Construction of database for rice canopy image and 
rough grain yield.

Field campaigns were conducted in 2019 and 2020 at 
20 locations in seven countries （Côte dʼIvoire, Senegal, 
Japan, Kenya, Madagascar, Nigeria, and Tanzania）. Data 
on rice growth traits and digital images were collected 
in seed production plots as well as experimental fields at 
research stations and farmers’  fields. At maturity, the 
RGB images were captured vertically downwards over 
the rice canopy from a distance of 0.8 to 0.9 m using a 
digital camera. The camera was set to automatic mode. 
The focal length and aspect ratio were set to 28 mm 
and 4：3 or 16：9, respectively. All the images were 
saved as jpg files. The digital cameras used in this study 
are listed in Table S1. The rice canopy images covered 
1 m2, which correspond to the harvesting area proposed 
by Food and Agriculture Organization （FAO） and used 
by Japan for agricultural statistics28）. Rough grain yield 
that contained filled and unfilled grains was measured at 
the corresponding plot or larger plots, where yield data 
were collected based on field experiments. Rice yields 
were reported as 14% moisture content. The abo-
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veground total dry weight and filled grain weight were 
also recorded in most studies, but not used for the 
CNN-based estimation because of the lack of data in 
some cases. For the training, validation, and test data, a 
single image per plot was recorded. These three catego-
ries are the main part of the database and randomly 
split by a ratio of 5：1：1. After splitting the data, the 
images categorized in the training data were aug-
mented 4-fold by flipping horizontally, vertically, and 
their combination, which resulted in 17,764 images for 
training data. In total, 4,820 yield data and 22,067 images 
of 462 rice cultivars were used in this study.

Image processing and development of convolutional 
neural network model

 The RGB images of the rice canopy were recorded 
with an aspect ratio of 4：3 or 16：9. For the images 
recorded at 16：9, the edge of the long side was trimmed 
to a ratio of 4：3. The images were then resized to 600
× 450 pixels for recording in the database. A bilinear 
algorithm was used to resize the images. This resize was 
to eliminate the difference in pixel sizes of images from 
various cameras, while keeping the aspect ratio and 
ground sampling distance （GSD）. The images used for 
the analyses have a GSD of 0.2 cm pixel-1. The images 
were again resized to a square of 512 × 512 pixels in 
8-bit PNG format as inputs for the CNN model. The 
brightness values of each channel of RGB were divided 
by 255 to scale from 0 to 1. These values were then 
standardized using the mean and variance calculated 
from all images categorized in the training dataset. The 
mean and variance of the RGB channel for the training 
dataset were [R, G, B] = [0.490, 0.488, 0.281] and [0.230, 
0.232, 0.182], respectively. The structure of the CNN 
was developed by Neural Network Console software 
version 1.5 （Sony Network Communications Inc., Japan, 
https://dl.sony.com/）. The Neural Network Console is a 
GUI-based software for Windows OS to design the 
structure of CNN and perform the training of the model. 
The database of the RGB images and rough grain yield 
was imported to the Neural Network Console, and the 
optimal structure showing the lowest validation error was 
determined by the CNN structural search function of the 
software. During the structural search, the loss function 
and optimizer were defined by the mean absolute error 
and Adam optimizer, respectively. The batch size, learn-
ing rate and epoch number were set to 32, 0.001 and 50, 
respectively. The determined CNN structure, loss func-
tion and optimizer were then deployed using Python 

language （version 3.7） with Pytorch framework （ver-
sion 1.7）. The optimal learning rate and batch size were 
determined by changing the combination of these hyper-	
parameters. Batch sizes of 16, 32, 64, 128, and learning 
rates of 0.0001, 0.0002, 0.0005, 0.0008, and 0.001 were 
combined, and the learning process was replicated 
10 times for each combination. The epoch number was 
set to 100, and the learning process was conducted by 
minimizing the loss of estimated and observed yields in 
the training dataset. The validation loss was also calcu-
lated for every epoch, and the model showing the least 
loss for validation was recorded. The rRMSE for the test 
dataset was calculated for models with all combinations 
of the hyper-parameters, and averaged across 10 repli-
cations. The best combination of batch size and learning 
rate was determined, and the recorded model was used 
in the present study.

To evaluate the model accuracy with the images of 
lower resolutions, we additionally developed the sets of 
training, validation and test images with GSD of 0.4, 0.8, 
1.6, and 3.2 cm pixel-1. The CNN models were trained by 
using images having these lower resolutions. The frame-
work, optimizer and the epoch number were identical 
with the establishment of the default model. Based on 
the optimization for the default model, the batch size and 
learning rate were set to 32 and 0.0001, respectively. 
The learning process was replicated 5 times for each 
GSD condition. The validation loss was also calculated 
for every epoch, and the model showing the least loss for 
validation was recorded. The R2 value for validation and 
test dataset was calculated for each selected model, and 
averaged across 5 replications. The altitude of the UAV 
and the single image footprint which gives the specific 
GSD was calculated by assuming the camera spec with 
a focal length = 10 mm, image sensor size = 1 inch and 
pixel size = 20M.

Statistical analyses, data summarizing, and code avail-
ability

The 4,820 observations of rough grain yield data were 
summarized by calculating the average, maximum, and 
minimum yields. The data were categorized according 
to the collected country, and the average yield in each 
country was calculated. The R2 and rRMSE were calcu-
lated to evaluate the model performance in each analy-
sis. The rRMSE is defined as follows：

y
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1
1

2Σ=（fi i－y ） ⑴
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where, y is the average of the observed yield, n is the 
size of the data, and fi and yi are the individual estima-
tions and observations of the yield. 

All analyses in the present study were conducted using 
Microsoft Excel （Microsoft, Redmond, WA, USA）, Neural 
Network Console software （Sony Network Communications 
Inc., Japan）, and Python language version 3.7（http://
www.python.org） with Pytorch framework version 1.7 

（https://pytorch.org/）. The code to run the developed 
CNN model is available at https://github.com/r1wtn/
rice_yield_CNN.

Results 

Database on rice canopy image and grain yield
The multinational dataset of rice canopy images and 

corresponding rough and filled grain yields, and abo-
veground dry weight were established with a standard-
ized data collection procedure for 4,820 harvested plots 
and 22,067 images across 20 locations in seven countries 

（Fig. 1a）. Côte dʼIvoire, Senegal, and Japan accounted for 
56%, 32%, and 5% of total plots, respectively. The data-
set covers both lowland and upland rice production 

systems containing 462 rice cultivars, and includes two 
crop establishment methods （direct seeding and trans-
planting）. N-P-K fertilizer application ranged from 0 to 
200 kg N ha-1, 0 to 120 kg P2O5 ha-1, and 0 to 120 K2O kg 
ha-1, respectively. The observed rough grain yield 
ranged from 0.1 to 16.1 t ha-1 （Fig. 1b-c） with an average 
of 5.8 t ha-1 and showed a normal distribution （Fig. 1a）. 
As rough and filled grain yields, and aboveground dry 
weight were highly correlated with each other, further 
data analyses using the CNN model focused only on 
rough grain yield.

A CNN model to estimate rough grain yield from canopy 
image

The determined CNN structure had five convolutional 
layers in the main stream, and the four convolutional 
layers in the branching stream. The pooling layers 
included both of Average Pooling and Max Pooling. The 
ReLU was mainly chosen as the activation function, but 
the ELU and LeakyReLU were also used in some parts. 
In the head part of CNN, the information from the two 
streams was fully connected, followed by the last ReLU 
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layer to output the estimated yield. The total number of 
parameters of the structure was 41,017. The learning 
rate and batch size during the learning process were 
optimized with 10 replications and identified the best 
combination at 0.0001 and 32, respectively, for the test 
dataset. With this combination, the best model of the 
learning process was generated at epoch = 61, and the 
model was used for all of the following analyses （Fig. 2a）, 
except for the test of greater GSD images. The devel-
oped CNN model could explain 69 and 68% of the varia-
tion in yield for validation and test data, respectively, 
with a relative root mean square error （rRMSE） of 0.22 
for both （Fig. 2b-c）. The relationship between the 

observed and estimated yields fit well with the 1：1 line 
for both datasets. The deviation between the estimated 
and observed yields of individual cultivars in the test 
dataset was plotted against the number of harvested 
plots in the training dataset （Fig. 2d）. The cultivars with 
more than 25 harvesting plots in the training dataset 
tended to have less than 1.5 t ha-1 deviation. The empir-
ical relationships illustrated as upper and lower bound-
ary curves in Fig. 2d indicate that increasing the number 
of plots by 10 times can reduce the error of the yield 
estimation by 50%. 

The applicability of the CNN to the images with greater 
GSD was then evaluated by comparing the models 
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developed by the various resolutions of the image data-
set. Compared with the default model （GSD = 0.2 cm 
pixel-1）, the model based on the greater GSD showed a 
lower accuracy both with the validation and test dataset 

（Fig. 3a）. The R2 value for the test dataset was, how-
ever, greater than 0.55 even when the model was 
trained by the images with GSD = 3.2 cm pixel-1. When 
assuming the typical camera specs of UAV, this GSD 
corresponds with altitude of 134 m, and single image 
footprint of 2.06 ha （Fig. 3a）.

Discussion

This is the first study to develop a versatile CNN 
model to predict rice yield accurately only by using 
ground-based RGB images. In the previous attempts 25,26）, 
the application of the CNN model was tested in the specific 
growing environments and cultivars. Our model was able 
to estimate rice yield with satisfactory precision in the 
to date most comprehensive and international dataset in 
terms of the growing environments, management prac-
tices, number of cultivars, camera angles and time of 

days. The accuracy of estimation in the test dataset was 
comparable to or even higher than those shown in ear-
lier studies, that used satellite data, or in combination 
with other data and models, or UAVs equipped with 
various sensors for estimating crop growth-related traits 
such as aboveground biomass and leaf area index, or 
indirectly predicting crop yield in farmers’ fields26,29-35）. 
Dry weight-based evaluation of the rough grain yield 
needs at least 48 to 72 hr oven-drying28）. In addition to 
that, crop cut, threshing and other processes requires 
additional time and labor inputs. In contrast with this 
conventional method, the CNN-based estimation is 
instantaneous, and shooting an image requires a few 
seconds. Our model can be applied to the high-through-
put phenotyping for on-station agronomic experiments. 

Our analyses showed a negative relationship between 
the model accuracy and GSD of the images used for the 
model development. This was because the lower resolu-
tions led to the loss of the leaf and panicle architecture 

（Fig. 3b-c）. However, the CNN model trained with the 
images of GSD = 3.2 cm pixel-1 still shows sufficient 
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estimation accuracy （Fig. 3a）. This GSD level is easily 
achieved by the UAV altitude greater than 100 m, if a 
commercial RGB camera is used. These results suggest 
that the CNN model can potentially use the images 
captured by the UAV for yield estimation. The CNN-
based estimation of rice yield and its spatial variation at 
field level can be a powerful solution for monitoring the 
rice productivity in the regional scale in the future.

Unexpected conditions causing the poor or moderate 
estimations of the CNN model should always be 
assumed when considering the scale and diversity of 
on-farm rice cropping systems globally. For instance, 
the dataset does not include the canopy affected by 
severe lodging, pests, insects, weeds, or abiotic stresses 
such as heat, drought, and flooding. Most of the data are 
from on-station irrigated lowland rice fields with rela-
tively higher yields, and data from farmers’  fields are 
limited. Thus, further research should especially focus on 
low-yielding and rain fed environments, and assessment 
of the potential use of the model for stressed or injured 
rice plants is warranted. The most practical solution to 
adapt the model to these conditions would be to add 
these new data to the database and develop a new 
model. The results in Fig. 2d suggest that better accu-
racy can be achieved with more harvesting plots, indi-
cating the extensibility of the CNN model. As a crite-
rion, 25 harvesting plots are needed for adaptation to 
new conditions with practical accuracy （error < 1.5 t 
ha-1）, which should be validated for developing a sam-
pling framework for improving and adapting the model 
to new conditions. 

The CNN structure used in this study has several 
convolutional layers, and is much smaller than the CNN 
used in the previous study for rice yield estimation26）, or 
representative structures for image recognition37）. This 
implies that the developed model can be easily trans-
ferred to mobile devices such as smartphones. The 
model does not require any type of color checker. A 
model having sufficient accuracy could be developed 
with images of lower resolution, and our approach can 
be potentially combined with UAV-based imagery. The 
present study leads to high throughput phenotyping, 
impact assessment of productivity-enhancing interven-
tions, and identifying fields where these are needed to 
sustainably increase crop production38）.
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