297 research outputs found

    Partial Melting of Depleted Peridotite in the Earth's Upper Mantle and Implications for Generation of Mid-Ocean Ridge Basalts

    Get PDF
    Peridotite in the earth's upper mantle undergoes polybaric, fractional melting as it rises adiabatically beneath mid-ocean spreading ridges. As liquid is continually extracted, peridotite becomes increasingly depleted in incompatible components. The amounts and compositions of partial melts of depleted peridotite are important parameters in models of MORB petrogenesis, but have not been well-constrained previously. I present partial melting experiments on a depleted peridotite composition at 10 kbar and 1250–1390°C. My experiments make use of small aggregates of glassy carbon particles into which partial melt is extracted at high temperature. I have been able to analyze low degree partial melts (&#60;10%) and quantify the effects of incompatible element depletion on the melting behavior of peridotite. Special tests of the approach to equilibrium in this study confirm the validity of the aggregate melt extraction technique, which has sparked much debate in the literature (see Chapters 2 and 3 for details). Melts of depleted peridotite differ in important ways from melts of fertile peridotite, mostly due to lower alkali contents and chemical consequences thereof. At low melt fractions, melts of depleted peridotite have less SiO₂, more CaO, and higher CaO/Al₂O₃ than melts of fertile peridotite at the same melt fraction. According to these results and others in the literature, solidus temperature is a linear function of incompatible major element content. Melt fraction at cpx-out is proportional to normative cpx in source peridotite. Liquid compositions from this study are in good agreement with calculations using the quantitative models of Kinzler and Grove (1992a), Langmuir et al. (1992), and Ghiorso and Sack (1995). Calculations of polybaric, fractional melting of primitive mantle using the models of Langmuir et al. (1992) and Asimow (1997) indicate that about half of all liquid contributed to MORB is formed by partial melting of depleted peridotite. The data presented in this thesis provide information about amounts and compositions of partial melts formed from depleted peridotite, an important upper mantle constituent beneath mid-ocean ridges, and can be used to improve quantitative models of MORB primary magma formation and further our understanding of MORB petrogenesis.</p

    Uranium isotope fractionation during coprecipitation with aragonite and calcite

    Get PDF
    © 2016 Elsevier Ltd. Natural variations in 238U/235U of marine calcium carbonates might provide a useful way of constraining redox conditions of ancient environments. In order to evaluate the reliability of this proxy, we conducted aragonite and calcite coprecipitation experiments at pH ~7.5 and ~8.5 to study possible U isotope fractionation during incorporation into these minerals.Small but significant U isotope fractionation was observed in aragonite experiments at pH ~8.5, with heavier U isotopes preferentially enriched in the solid phase. 238U/235U of dissolved U in these experiments can be fit by Rayleigh fractionation curves with fractionation factors of 1.00007 + 0.00002/-0.00003, 1.00005 ± 0.00001, and 1.00003 ± 0.00001. In contrast, no resolvable U isotope fractionation was observed in an aragonite experiment at pH ~7.5 or in calcite experiments at either pH. Equilibrium isotope fractionation among different aqueous U species is the most likely explanation for these findings. Certain charged U species are preferentially incorporated into calcium carbonate relative to the uncharged U species Ca2UO2(CO3)3(aq), which we hypothesize has a lighter equilibrium U isotope composition than most of the charged species. According to this hypothesis, the magnitude of U isotope fractionation should scale with the fraction of dissolved U that is present as Ca2UO2(CO3)3(aq). This expectation is confirmed by equilibrium speciation modeling of our experiments. Theoretical calculation of the U isotope fractionation factors between different U species could further test this hypothesis and our proposed fractionation mechanism.These findings suggest that U isotope variations in ancient carbonates could be controlled by changes in the aqueous speciation of seawater U, particularly changes in seawater pH, PCO2, Ca2+, or Mg2+ concentrations. In general, these effects are likely to be small (\u3c0.13‰), but are nevertheless potentially significant because of the small natural range of variation of 238U/235U

    Inter-calibration of a proposed new primary reference standard AA-ETH Zn for zinc isotopic analysis

    Get PDF
    We have prepared a large volume of pure, concentrated and homogenous zinc standard solution. This new standard solution is intended to be used as a primary reference standard for the zinc isotope community, and to serve as a replacement for the near-exhausted current reference standard, the so-called JMC-Lyon Zn. The isotopic composition of this new zinc standard (AA-ETH Zn) has been determined through an inter-laboratory calibration exercise, calibrated against the existing JMC-Lyon standard, as well as the certified Zn reference standard IRMM-3702. The data show that the new standard is isotopically indistinguishable from the IRMM-3702 zinc standard, with a weighted d66/64Zn value of 0.28±0.02‰ relative to JMC-Lyon. We suggest that this new standard be assigned a value d66/64Zn of +0.28‰ for reporting of future Zn isotope data, with the rationale that all existing published Zn isotope data are presented relative to the JMC-Lyon standard. Therefore our proposed presentation allows a direct comparison with all previously published data, and that is directly traceable to a certified reference standard, IRMM-3702 Zn. This standard will be made freely available to all interested labs through contact with the corresponding author

    Inter-calibration of a proposed new primary reference standard AA-ETH Zn for zinc isotopic analysis

    Get PDF
    We have prepared a large volume of pure, concentrated and homogenous zinc standard solution. This new standard solution is intended to be used as a primary reference standard for the zinc isotope community, and to serve as a replacement for the nearly exhausted current reference standard, the so-called JMC-Lyon Zn. The isotopic composition of this new zinc standard (AA-ETH Zn) has been determined through an inter-laboratory calibration exercise, calibrated against the existing JMC-Lyon standard, as well as the certified Zn reference standard IRMM-3702. The data show that the new standard is isotopically indistinguishable from the IRMM-3702 zinc standard, with a weighted δ66/64Zn value of 0.28 ± 0.02‰ relative to JMC-Lyon. We suggest that this new standard be assigned a δ66/64Zn value of +0.28‰ for reporting of future Zn isotope data, with the rationale that all existing published Zn isotope data are presented relative to the JMC-Lyon standard. Therefore our proposed presentation allows for a direct comparison with all previously published data, and that are directly traceable to a certified reference standard, IRMM-3702 Zn. This standard will be made freely available to all interested labs through contact with the corresponding author

    Metasomatized Lithosphere and the Origin of Alkaline Lavas

    Full text link

    Molybdenum Geochemistry in Salt Marsh Pond Sediments

    Get PDF
    The concentration and isotopic composition of sedimentary molybdenum (Mo) has been used to distinguish different redox environments in modern marine settings and in the geological record. We report Mo concentrations and δ98Mo from porewaters and sediments in three anoxic East Anglian salt marsh pond environments: (1) ‘iron-rich’ sediments containing high concentrations of dissolved ferrous iron (up to 2 mM), (2) ‘sulfide-rich’ sediments containing very high concentrations of aqueous sulfide (up to 10 mM) and, (3) sediments that we consider to be intermediate between ‘iron-rich’ and ‘sulfide-rich’ conditions. In iron-rich sediments, we suggest that iron speciation and mineralogy controls the concentration and isotopic composition of Mo. Despite similar aqueous sulfide profiles, the intermediate and sulfide-rich pond sediment have different porewater Mo concentrations and δ98Mo. In the sulfide-rich pond sediment, we suggest that the concentration and isotopic composition of Mo is controlled by solubility equilibrium with an Fe-Mo-S mineral species (e.g. FeMoS4) due to similarities in sediment and porewater δ98Mo throughout the sediment column. In the intermediate pond sediment, we conclude that active breakdown of iron oxides redistributes porewater Mo, observable as a peak of dissolved Mo (>100ppb), which diffuses within the sedimentary porewaters. The sedimentary δ98Mo is higher in sulfide-rich and intermediate pond sediment (mean = 1.66‰, range = 0.98–1.92‰) than in iron-rich pond sediment (mean = 1.10‰, range = 0.28–1.65‰) with all ponds having sedimentary δ98Mo that is lower than seawater. The maximum sedimentary δ98Mo observed in these anoxic sediments, which is 0.5-0.7‰ lower than seawater, appears to be set by Fe-Mo-S equilibration with ambient thiomolybdate species. We suggest diagenetic overprinting can cause more efficient capture of pond water Mo and causes sediment δ98Mo of originally iron-rich pond sediment to evolve to higher values at progressively higher aqueous sulfide concentrations
    • …
    corecore