406 research outputs found

    Endogenous endophthalmitis caused by Pseudomonas aeruginosa in a preterm infant: a case report

    Get PDF
    Endophthalmitis is an infection of the vitreous or aqueous humor of the eye. Although it rarely occurs in the neonatal period it has been previously diagnosed in preterm infants

    PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina.

    Get PDF
    Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia

    New miniPromoter Ple345 (NEFL) drives strong and specific expression in retinal ganglion cells of mouse and primate retina.

    Get PDF
    Retinal gene therapy is leading the neurological gene therapy field, with 32 ongoing clinical trials of recombinant adeno-associated virus (rAAV)-based therapies. Importantly, over 50% of those trials are using restricted promoters from human genes. Promoters that restrict expression have demonstrated increased efficacy and can limit the therapeutic to the target cells thereby reducing unwanted off-target effects. Retinal ganglion cells are a critical target in ocular gene therapy; they are involved in common diseases such as glaucoma, rare diseases such as Leber's hereditary optic neuropathy, and in revolutionary optogenetic treatments. Here, we used computational biology and mined the human genome for the best genes from which to develop a novel minimal promoter element(s) designed for expression in restricted cell types (MiniPromoter) to improve the safety and efficacy of retinal ganglion cell gene therapy. Gene selection included the use of the first available droplet-based single-cell RNA sequencing (Drop-seq) dataset, and promoter design was bioinformatically driven and informed by a wide range of genomics datasets. We tested seven promoter designs from four genes in rAAV for specificity and quantified expression strength in retinal ganglion cells in mouse, and then the single best in nonhuman primate retina. Thus, we developed a new human-DNA MiniPromoter, Ple345 (NEFL), which in combination with intravitreal delivery in rAAV9 showed specific and robust expression in the retinal ganglion cells of the nonhuman-primate rhesus macaque retina. In mouse, we also developed MiniPromoters expressing in retinal ganglion cells, the hippocampus of the brain, a pan neuronal pattern in the brain, and peripheral nerves. As single-cell transcriptomics such as Drop-seq become available for other cell types, many new opportunities for additional novel restricted MiniPromoters will present

    The interplay of microscopic and mesoscopic structure in complex networks

    Get PDF
    Not all nodes in a network are created equal. Differences and similarities exist at both individual node and group levels. Disentangling single node from group properties is crucial for network modeling and structural inference. Based on unbiased generative probabilistic exponential random graph models and employing distributive message passing techniques, we present an efficient algorithm that allows one to separate the contributions of individual nodes and groups of nodes to the network structure. This leads to improved detection accuracy of latent class structure in real world data sets compared to models that focus on group structure alone. Furthermore, the inclusion of hitherto neglected group specific effects in models used to assess the statistical significance of small subgraph (motif) distributions in networks may be sufficient to explain most of the observed statistics. We show the predictive power of such generative models in forecasting putative gene-disease associations in the Online Mendelian Inheritance in Man (OMIM) database. The approach is suitable for both directed and undirected uni-partite as well as for bipartite networks

    Can Geographical Factors Determine the Choices of Farmers in the Ethiopian Highlands to Trade in Livestock Markets?

    Get PDF
    Proximity and affiliation to the local market appear to be two of the most relevant factors to explain farmer's choices to select a particular trading point. Physical barriers may limit the options , especially in developing countries. A network of villages linked by traders/farmer-traders sharing livestock markets was built with field data collected in 75 villages from 8 kebelles in the Wassona Werna wereda of the Ethiopian Highlands. Two exponential random graph models were fitted with various geographical and demographic attributes of the nodes (dyadic independent model) and three internal network structures (dyadic dependent model). Several diagnostic methods were applied to assess the goodness of fit of the models. The odds of an edge where the distance to the main market Debre Behran and the difference in altitude between two connected villages are both large increases significantly so that villages far away from the main market and at different altitude are more likely to be linked in the network than randomly. The odds of forming an edge between two villages in Abamote or Gudoberet kebelles are approximately 75% lower than an edge between villages in any other kebelles (p<0.05). The conditional log-odds of two villages forming a tie that is not included in a triangle, a 2-star or a 3-star is extremely low, increasing the odds significantly (p<0.05) each time a node is in a 2-star structure and decreasing it when a node is in a 3-star (p<0.05) or in a triangle formation (p<0.05)), conditional on the rest of the network. Two major constraining factors, namely distance and altitude, are not deterrent for the potential contact of susceptible small ruminant populations in the Highlands of Ethiopia

    Niche as a determinant of word fate in online groups

    Get PDF
    Patterns of word use both reflect and influence a myriad of human activities and interactions. Like other entities that are reproduced and evolve, words rise or decline depending upon a complex interplay between {their intrinsic properties and the environments in which they function}. Using Internet discussion communities as model systems, we define the concept of a word niche as the relationship between the word and the characteristic features of the environments in which it is used. We develop a method to quantify two important aspects of the size of the word niche: the range of individuals using the word and the range of topics it is used to discuss. Controlling for word frequency, we show that these aspects of the word niche are strong determinants of changes in word frequency. Previous studies have already indicated that word frequency itself is a correlate of word success at historical time scales. Our analysis of changes in word frequencies over time reveals that the relative sizes of word niches are far more important than word frequencies in the dynamics of the entire vocabulary at shorter time scales, as the language adapts to new concepts and social groupings. We also distinguish endogenous versus exogenous factors as additional contributors to the fates of words, and demonstrate the force of this distinction in the rise of novel words. Our results indicate that short-term nonstationarity in word statistics is strongly driven by individual proclivities, including inclinations to provide novel information and to project a distinctive social identity.Comment: Supporting Information is available here: http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0019009.s00

    Making Associativity Operational

    Get PDF
    The purpose of this paper is to propose an operational idea for developing algebraic thinking in the absence of alphanumeric symbols. The paper reports on a design experiment encouraging preschool children to use the associative property algebraically. We describe the theoretical basis of the design, the tasks used, and examples of algebraic thinking in 5–6-year-old children. Theoretically, the paper makes a critical distinction between operational and structural meanings of the notion of equality. We argue that mathematical thinking involving equality among young learners can comprise both an operational and a structural conception and that the operational conception has a side that is productively linked to the structural conception. Using carefully designed hands-on tasks, the crux of the paper is the realization of algebraic thinking (in verbal mathematics) as operationally experienced in the ability to transform one number structure, with a quantity that is subject to change, into another through equality-preserving transformations

    Effect of promoter architecture on the cell-to-cell variability in gene expression

    Get PDF
    According to recent experimental evidence, the architecture of a promoter, defined as the number, strength and regulatory role of the operators that control the promoter, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect noise in gene expression in a systematic rather than case-by-case fashion. In this article, we make such a systematic investigation, based on a simple microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous) and how each of these affects the level of variability in transcription product from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte
    • …
    corecore