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Abstract The purpose of this paper is to propose an operational idea for developing

algebraic thinking in the absence of alphanumeric symbols. The paper reports on a

design experiment encouraging preschool children to use the associative property

algebraically. We describe the theoretical basis of the design, the tasks used, and

examples of algebraic thinking in 5–6-year-old children. Theoretically, the paper makes

a critical distinction between operational and structural meanings of the notion of

equality. We argue that mathematical thinking involving equality among young learners

can comprise both an operational and a structural conception and that the operational

conception has a side that is productively linked to the structural conception. Using

carefully designed hands-on tasks, the crux of the paper is the realization of algebraic

thinking (in verbal mathematics) as operationally experienced in the ability to transform

one number structure, with a quantity that is subject to change, into another through

equality-preserving transformations.

Keywords Associative property . Early algebra . Operational algebra . Preschool .

Structural algebra

There is a growing consensus that Belementary students can learn to think about

arithmetic in ways that both enhance their early learning of arithmetic and provide a

foundation for learning algebra^ (Carpenter, Levi & Farnsworth, 2000, p. 1). This study

extends the existing research by investigating the possibility of developing algebraic

thinking in the absence of alphanumeric symbols at the preschool level. In particular,

we focus on the associative property that is one of the main components of mental and
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written methods of calculations (McCallum, Zimba & Daro, 2011). However, in the

absence of writing symbols (namely, alphanumeric, symbols for addition and subtrac-

tion, equality symbol, and parentheses), careful attention should be paid to the meaning

and the means of bringing about such an understanding. This paper does so while

reporting a design experiment, its theoretical background, and learning activities.

Moreover, we show how some preschool children (aged 5–6) experienced the algebraic

nature of the associative law within the situation designed.

The Algebraic Nature of Arithmetic Facts

An important part of so-called early algebra has been to investigate the extent of

children’s awareness of a certain general fact demonstrated in a specific arithmetic

problem. For example, if students explain that the equality 78 − 49 + 49 = 78 is true

Bbecause you took the 49 away, and it’s just like getting it back,^ it might be inferred

that

Although the students used a specific example to justify the generalization, the

way they explained the example showed that they understood that they could do

the same thing with any numbers. (Carpenter et al., 2000, p. 3)

To bring about such an understanding, Fujii and Stephens (2001) propose the use of

quasi-variables, by which they mean numbers that vary within Ba number sentence or

group of number sentences that indicate an underlying mathematical relationship which

remain true whatever the numbers used are^ (p. 259). For this approach to work, one

needs to be or to become a Bproceptual thinker^ (Gray & Tall, 1994) who can resist

immediate direct calculations and an operational conception of the equal sign (Kieran,

1981) and concurrently realize which particular features should be stressed and ignored.

Only then would it be possible to see a specific equality like 78 − 49 + 49 = 78 as a

generic equality and Bthe carrier of the general^ (Mason & Pimm, 1984) in which both

49 and 78 can be understood as a quasi-variable indicating that the sentence belongs to

a type of number sentence. Put simply, one needs a structural conception of the equal

sign. In this paper, we propose a different approach that does not rely on such a

conception.

Operational and Structural Sides of Equality

The equal sign is a symbol to indicate the notion of equality, and equality tells us

whether two mathematical objects, possibly presented to us in wildly different ways, are

to be considered equal (Mazur, 2008). Strictly speaking, the equal sign represents

equivalence. The number expression 8 + 2 + 4 is equivalent to (or Bis the same as^)

(8 + 2) + 4 or 8 + (2 + 4). Students can use some structured materials, say Cuisenaire

rods, to model the number expressions and see either way they would end up with the

same number of blocks, that is, (8 + 2) + 4 = 8+ (2 + 4).We call this focus on the equality

as equivalence, the structural conception in which we see the both sides of the equal sign
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intact (Carpenter, Levi, Franke & Zeringue, 2005; Stephens, 2006; Molina & Ambrose,

2008; Stephens, Knuth, Blanton, Isler, Gardiner & Marum, 2013).

However, when students transform 8 + 6 into 10 + 4 (i.e. 8 + (2 + 4) into (8 + 2) + 4)

and then to 14, the focus is on the transformations that have taken place while

intermediary structures might Bhave only transient existence^ (Caspi & Sfard, 2012,

p. 50) in the process of calculations. We call this focus on the equality as transforma-

tion, the operational conception in which we replace one number expression with

another through Bequality-preserving transformations^ (Kieran, 2014) without neces-

sarily paying attention to the expressions for their own sake. Both conceptions of

equality can play a productive role in Bthinking relationally about equality^ that is one

of the main themes of Balgebraic thinking and the routes by which its growth might be

encouraged^ (Kieran, 2014, p. 1) in arithmetic. However, it is not an easy route.

With Letters It Is Hard, with Numbers It Is Even Harder

Based on historical and empirical evidence, Caspi and Sfard (2012) argue that the first

level in the development of algebra is processual, where the focus is on numerical

calculations in the order of their execution on constant (or as in Sfard & Linchevski

(1994), fixed) values, either known or unknown. With letters, it would be challenging to

break away this default linear structure and with numbers even more challenging.

Arithmetic is where the so-called left-to-right approach commonly used in early years

of school (Booth, 1989; Kieran, 1989) goes hand in hand with the students’ Btendency

to think about expressions involving binary operations in terms of a sequential

procedure^ (Larsen, 2010, p. 42). Accordingly, both expressions 8 + 2 + 4 and 7 +

9 + 1 have the same chance of being treated from left to right, as (8 + 2) + 4 and (7 +

9) + 1 regardless of the addends involved. Arithmetic is where the operational concep-

tion of the equal sign is most frequently realized as instructions to do something and as

an obstacle for the structural conception, that is, equality as equivalence (Kieran, 1981).

Accordingly, the response to the open number sentence 8 + 6 = ◻ + 4 would be 14

(Stephens et al., 2013).

Yet, arithmetic is where we wish to cultivate students’ relational thinking about

equality. One way to do so is to bring out the relational meaning of the equal sign

whenever it is used. However, it is doubtful that simply telling students what the equal

sign means effectively develops understanding (Carpenter, Franke & Levi, 2003).

Instead, we might use a structural program in which students see structural expressions

and equations in their entirety. For example, we might develop a set of true/false (e.g.

(4 + 7) + 9 = 4 + (7 + 9)) or open number sentences (e.g. 56 + 75 + 25 = ◻) that might

encourage our students to experience and to make explicit the associative property

(Carpenter et al., 2003; Carpenter et al., 2005). In this way, students may find a correct

operational sense of when and how it is appropriate to use the associative property to

transform one mathematical expression into the other. However, when working with

prealphanumeric students and in the absence of writing symbols to record number

sentences, a structural program would be hardly accessible. Yet, we might encourage an

operational conception of equality. This paper proposes an approach to do so, using the

associative property as an example.
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The Associative Property

It is common to think of (a + b) + c = a + (b + c), but not (a + b) − c = a + (b − c), as the

associative property. However, using the concept of additive inverse, we can see (a + b) −

c as (a + b) + (− c), and then as aþ bþ −cð Þð Þ, which is the same as a + (b − c). The same

argument applies to (a − b) + c = a + (c − b) and (a − b) − c = a − (b + c). Of course, this

way of looking at associativity is too advanced for a preschooler or a primary schooler.

However, children can use these equalities when operating with natural numbers and

without thinking of the concept of additive inverse. For example, while transforming 13 −

5 to 13 − 3 − 2 by decomposing 5 = 3 + 2 (with respect to 10), one implicitly replaces 13

− (3 + 2) with (13 − 3) − 2. The equality 13 − (3 + 2) = (13 − 3) − 2 provides two differ-

ent ways of structuring and restructuring 13 − 3 − 2. In general, the same thing can be said

about (a + b) + c = a + (b + c), (a + b) − c = a + (b − c), (a − b) + c = a + (c − b), and (a − b)

− c = a − (b + c) in relation to a + b + c, a + b − c, a − b + c, and a − b − c, respectively.

Moreover, the associative property can also be translated in the language of trans-

formations. Consider that �b� c Bcan be perceived as a composition of two transfor-

mations that yield a third transformation^ (Peled & Carraher, 2008, p. 320). Thus, one

might move from 4 − 2 + 1 to 4 + (− 2 + 1) (where B− 2^ is thought of as a change), and

then, to 4 − 1 as an attempt to figure out the total change that has been applied to the

stating number (here, 4). In this paper, the focus is on a + b − c and a − b + c,

interpreted as adding-removing and removing-adding, respectively.

The Purpose of Study Revisited

The purpose of this study was to investigate the possibility of developing an algebraic

understanding of the associative property in the absence of alphanumeric symbols. Our

first step was to interpret associativity operationally, in terms of transformations. In this

respect, the aim was to help children to avoid the temptation of calculating from left to

right and instead encourage them to restructure the given expression. For example, we

intended that children be able to interpret 3þ 4� 2 as 3þ 4� 2ð Þ, rather than

automatically as 3þ 4ð Þ �2. Learning to restructure an arithmetic expression

is an important step towards relational understanding of equality in algebra.

However, such restructuring only involves known specific numbers in a result-

oriented calculation. In contrast, one essential component of algebraic thinking

is the ability of dealing with the indeterminate quantities that are unknowns or

variables (Radford, 2014).

Hence, we had to address two problems. To address the first problem (i.e. total

change), we adopted the didactical strategy of dissuading the learner from touching

(i.e. calculating with) the starting number (Asghari , 2012), hoping that it also

addresses the second problem (i.e. indeterminacy). For example, working with the

expression 3þ 4� 2. If we prevent the actualization of the initial and subsequent

operations (3 + 4 and 7� 2 respectively) and instead invite children to operate on

the starting number (here, 3) while leaving it intact, then, they might transform 3

þ4� 2 to 3þ 4� 2ð Þ, and then, to 3 + 2. In doing so, the specific starting number

(here, 3) might turn into what is called a specular number that is specific for the

learner, but it is treated as a non-specific number (Asghari, 2012). As such, one of
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the operands (here, 3) is treated as an indeterminate value, while the problem is

restructured into a new one through equality-preserving transformations.

The idea of specularity seemed promising since its focus is on Bthe process acted on

the object^ (Asghari, 2012, p. 37) rather than the structural features of the problem.

Whether it works in the absence of writing symbols was the subject of a one-on-one

design experiment (in the sense of Cobb, Confrey, diSessa, Lehrer & Schauble, 2003)

of which the research question was as follows.

In preschool children ages 5–6 years and in the absence of alphanumeric symbols,

can the idea of specularity promote an operational algebraic understanding of

associativity?

Methodology

We conducted a series of sessions with a small number of preschoolers. The sessions

were test-beds for practical variations of the idea of specularity as a means to promote

operational algebraic understanding (of associativity). Preschool children who partici-

pated in the study were from the same preschool in the north of Tehran. In Iran,

educational programs at the preschool level vary from one preschool to another. In this

particular preschool, the focus of their program was mostly on hands-on activities. As

far as mathematics is concerned, their focus was on counting activities and the well-

known activities of trying to find a one-to-one correspondence between sets and hence

to show whether the sets have the same cardinality or not. Since numeral recognition

and numeral writing is part of the centered national mathematics program for the first

year of school, the preschool program was not obliged to reach any particular target in

that direction; at the best, their point was to create a sense of familiarity with numerals.

We also did not use numerals in the study.

The study had two main cycles in which two different groups of students partici-

pated. The first group consisted of nine children. The first cycle was the developmental

stage of the study in which different tasks were designed and tried out. A year later, we

worked with a different group consisted of five children. Now, the study was in a more

advanced stage and only a carefully chosen number of tasks were used to get the

desired outcome. More importantly, as a result of our growing understanding of the

situation, a fundamentally new task was added to the previous tasks.

A number of individual task-based interviews were used in both cycles. Each

interview that lasted between 5 and 15 min (once a week) was videotaped and

subsequently transcribed for further analysis. The maximum number of interviews with

each child (done by Leyla, known to children as auntie Leyla and one of the authors of

the present article) was 20 in the first cycle and 7 in the second cycle. Generally, in both

cycles, the first few tasks were numeric. The tasks (not reported here because of space

limitations) included counting a number of objects (toys, counters, etc.) and one-step

addition and subtraction problems with or without hands-on material. The aim of the

numeric tasks was to decide the range of numbers that would be meaningful to each

child. In the main stage of the study, we used five types of tasks, all being variations of

the same theme: structuring/restructuring a to-be-specular number sentence with two

consecutive operations on a number intended as a specular number (specific, but

untouchable). In task 1 (hereafter, Btask x^ is representative of its type), the starting
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number was known and Bsmall^, in task 2, known and Bbig^, in task 3, unknown and

specific, and in task 4, known and small again; finally, in task 5 (added to the study in

the second cycle), we used two tasks simultaneously with two unknown starting

numbers. The details and reasons behind all these choices will be explained below.

The following data come from both cycles of the study.

The Study

The First Cycle

Structure of Tasks, Illustrated on Task 1. There are two small toy animals, a frog

and a ladybird, and two empty boxes (Fig. 1). Each toy is attached to one of the boxes.

Leyla counts three candies and places them in the frog’s box. She does the same for the

ladybird’s box. Then, Leyla counts four new candies and adds them to the frog’s box,

and finally, she visibly removes two candies from the same box. Although the child is

allowed to see the whole process and to know the beginning number of candies in each

box and the number of candies added and removed, it is not allowed to see or touch

(say, for counting) the content of the two boxes, unless it is asked for by the child. The

task for the child is to determine which toy has more candies.Various variations of the

task above were designed and used with different background stories, hands-on

materials, and numbers and yet similar underlying idea. Generally, each task started

with two Bnumber holders^ initially holding the same number of objects. The starting

number could be known and Bsmall^ (task 1 and task 4), known and Bbig^ (task 2), or

unknown (task 3 and task 5). The starting number was intended to be a specular

number, simply by hiding the (number of) objects, say, inside a box. Hereafter, square

brackets around the starting number indicate its intended role (e.g. [3] in task 1). Then

two operations in which what being added or subtracted was in the range of 1 to 10, one

after the other, were applied on one of the holders (e.g. the frog’s box in task 1). The

problem was to compare the number of objects of the holders with each other (e.g.

[3] + 4 − 2 and [3] in task 1). In this paper, the pairs of operations are adding-removing

and removing-adding. In relation to the design of the tasks, there are two points that

should be highlighted.

First, in the absence of writing symbols to record the problem, it is not easy to track

which number is compared with which number. For example, in the task above, if we

(1)                 (2)                  (3)  

Fig. 1 Task 1
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had used only one box, it would not have been clear for the child whether the final

amount ([3] + 4 − 2) should be compared with the intermediate amount ([3] + 4) or the

initial amount ([3]). The use of two different boxes reduces such ambiguities. More-

over, the presence of two number holders could keep the starting number specific

(though, untouchable) during the whole process and also allow the child to check his or

her answer (if necessary).

Second, the tasks ask for the comparison of the initial and final states, not for the

calculation of the final result. Asking for the final result would be a direct invitation to

the left-to-right calculation when starting with a known number (task 1) and meaning-

less when starting with an unknown number (task 3).

It is now time to see the tasks through children’s eyes.

Task 1: the Starting Number Is Known and Small. Task 1 is one of more than

hundred tasks with a known and Bsmall^ (yet, untouchable) starting number that were

used in both cycles of the study. This version of the tasks allowed for various solutions

as follows (notice that though the term left-to-right is reminiscent of written calcula-

tions, for simplicity, we sometimes use it to refer to the order imposed by the

presentation of the tasks).

1. Following the left-to-right order that includes moving from ([3] + 4) − 2 to 7 − 2 and

then to 5 which is subsequently compared with the initial number (3). Here, the focus is

on the result of each operation one after the other.

2. Changing the structure of the task from ([3] + 4) − 2 to [3] + (4 − 2) and then

following one of these three options: (i) calculating the total change (4 − 2 = 2) and

then applying it to the initial number (3 + 2 = 5), which is subsequently compared with

the initial number (3); (ii) calculating the total change (4 − 2 = 2) and realizing that it is

a Bpositive^ change: [3] + 2 is more than [3]; (iii) realizing the direction of change

(whether it is Bpositive^ or Bnegative^) without calculating the amount of change: the

number added (4) is more than the number removed (2), thus the final is more than the

initial. In many cases, children could not explain how they have solved the task at

hand. For example, Melina (a 5-year-old girl) said: Bthis ([2] + 2 − 1) has more; it has

three, but that one has two.^When Leyla asked: Bhow do you know?^ she answered: BI

just know.^ When the calculations were a bit more cumbersome, there was more

chance to observe the strategy used. The following excerpt illustrates how Sarah (a

6-year-old girl) used the left-to-right strategy to solve task 1:

Sarah: May I use my fingers?

Leyla: Yes, of course.

Sarah: Three plus four is seven [she held up three fingers on her left hand and

four fingers on her right hand. Then she counted all the fingers held up]. Then

you removed two [she closed two fingers out of four held-up fingers on her right

hand and counted all the fingers that remained up on both hands]. It’s five.

Leyla: So which toy has more candies?
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Sarah: Frog.

There were also cases that the child could explain how the task has been solved. For

example, Inez (a 6-year-old girl) used her fingers in a left-to-right calculation to

compare 5 − 2 + 3 (= 6) and 5. But, when faced with [6] + 3 − 2, she explained her

strategy:

Inez: This ([6] + 3 − 2) has more; it’s seven.

Leyla: How do you know that it’s seven?

Inez: Because, you added three, and took away two.

She stresses on number 2 meaning that it is less than the number added. Then, she

proceeds by applying the total change (3 − 2 = 1) to the initial number 6 + 1 = 7.

Inez’s change of strategy from one task to the other was typical of this stage of study

in which children worked with known starting numbers. The same child could solve

each task by either of the two strategies, whether the task was adding-removing or

removing-adding. However, the available evidence from more than a hundred tasks

suggested that the size of the numbers influences the child’s strategy. For example, Inez

could easily find the result of [5] − 2 + 3 from left to right by calculating the result of 5

− 2 (= 3) and then the result of 3 + 3 (= 6). The left-to-right approach to [6] + 3 − 2

would lead to 6 + 3 (= 9) and 9 − 2 (= 7) which both were beyond the calculating ability

she showed earlier when answering the numeric tasks.

It is important to notice that Bnumber size^ is a relative concept. Thus, while the

magnitude of the left-to-right calculations in [6] + 3 − 2 was big enough to lead Inez to

restructuring the problem, even something like [4] + 6 − 5 could not hinder Parsa (a 6-

year-old boy) from using the imposed structure of the task. True, the presentation of the

tasks did not allow children to use physical objects to represent and solve the problem,

but it did not stop them to model the problem on their fingers or mentally carry the

calculations when the numbers involved were Bsmall^ enough for them. In general, the

more a child was able to operate on the initial number, the more he or she was inclined to

apply the imposed structure of the task. Thus, for more able children, the known starting

number (though untouchable) was more specific and less specular. For these children

(like Parsa), the tasks were just an arithmetic addition and subtraction task. For those

(like Inez) who were at times impelled to restructure the problem (say, from ([6] + 3) − 2

to [6] + (3 − 2)), restructuring was mainly directed towards finding the final result of the

numeric sentence. In a way, the restructuring was attached to the starting number. The

aim of the next two tasks was to bring the restructuring to the fore, receding (calculations

with) the starting number into the background.

Task 2: the Starting Number Is Known and Big. In task 2, the magnitude of the

starting number and the middle and final results is Bbig^ enough to block the

imposed order of the calculations and encourage the use of restructuring strategy.

Here, the candies of a bag of a hundred candies are emptied into a box. Leyla adds

three candies to the box and then removes four candies from the box (Fig. 2).

1566 A.H. Asghari, L.G. Khosroshahi



Leyla: Are there more or less than hundred candies in the box?

Sarah: Oh, it’s very easy. It is less than a hundred.

Leyla: Why?

Sarah: You put three [candies] in place of that four [candies], and so, Bhundred^

went down one.

Leyla: What should I do if I want it to be a hundred again?

Sarah: You should add one.

In using a big number, Sarah’s inability to model the problem on her fingers

turned into the ability of perceiving (100 + 3) − 4 as 100 + (− 4 + 3) and then as

100 − 1 (here, − 4 + 3 represents a composition of two transformations).

A big number would work providing that the child could apprehend it as a

specific whole. Thus, while 20 (and for some children, even 10) was big enough

to encourage restructuring, a number like 100 could be too big. There were

times that children comprehended a Bbig^ number as Btoo many^ (rather than as

a fixed whole), where a bit more or less than Btoo many^ was still Btoo many^!

In the following excerpt, Fatima (who was competent with numbers in the range

of 1 to 10) compares 100 + 3 − 2 with 100:

Fatima: It’s more than hundred.

 (1)             →         (2)        (3) 

Fig. 2 Task 2
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Leyla: Why?

Fatima: Aha! It’s less than hundred!

Leyla: Do you remember what I did?

Fatima: Yes, you added three [candies], and then, removed two [candies].

Leyla: How many candies were inside the box?

Fatima: Hundred.

Leyla: Now, how many candies are inside the box?

Fatima: Twenty!

A Bbig^ number, if meaningful to the child, could encourage the change of structure

while leaving the starting number intact. However, again, the transformations are bound

to a specific number (say, 100), at least for us as observers. The next task is to address

the indeterminacy of the starting number.

Task 3: the Starting Number Is Unknown and Specific. Here, the starting number

is big enough that cannot be subitized and small enough that can be counted and

used in calculations (if allowed or wanted). Here, there are two equal height towers

(with the same number of cubes), one red and the other blue. Leyla removes one

cube from the red tower (puts it on the table) and adds three cubes to the same

tower. Sarah does not see the towers, but she sees that one red cube comes out from

behind a pad and then three red cubes go behind the pad (Fig. 3).

Leyla: Which tower is taller now?

Sarah: Red has two more.

Leyla: How do you know?

Sarah: Because one of those three [cubes] replaces the one you removed; and the

other two [cubes] make the red tower taller than the blue tower.

With an unknown starting number, there is no other way to solve the task but by

restructuring it. Sarah restructured the initial arithmetic structure of the task from

([a] − 1) + 3 to ([a] − 1) + (1 + 2) and then to [a] + 2. This is decomposing 3 = 1 + 2

with respect to the number taken away and then using the associative law twice:

first in restructuring ([a] − 1) + (1 + 2) to (([a] − 1) + 1) + 2, and second, in

transforming ([a] − 1) + 1 to [a]. The second transformation can be also thought of

as making use of Bthe principle of inversion^ which is known to be used by children

even younger than Sarah (Geary, 2006).
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Sarah spontaneously answered two questions: Bwhich one has more?^ and Bhow

many more?^ Most children (including Sarah), most of the times, just answered the

former question, mentioning the direction of the total change, without calculating the

amount of the total change. Thus, a common answer could be something like, BRed is

more because you removed one, but added three.^ In fact, for most children, the

difference questions (Bhow many more?^) were hard even for two known numbers,

let alone two unknown numbers (say, [a] and [a] − 1 + 3 in the task above). For two

known numbers, the typical answer was to say the bigger number (see also Hudson,

1983). For two unknown numbers (task 3), if they were asked the question, the typical

answer was, BI don’t know because we didn’t see inside it.^ However, if the question

was, BHow many must we add to this box ([a]) so that it will have the same number as

this box ([a] – 1 + 3)?^ then it was more likely to get a correct answer. Phrasing the

difference question in terms of transformations made it like an equalizing problem in

arithmetic where Bthe question is directly about how much to add to one set to make it

equal to the other set^ (Nunes & Bryant, 1996, p. 130). Unlike arithmetic problems, the

situation here is not start-known and result-known. However, it is not quite start-

unknown and result-unknown either. The starting number and accordingly the final

number, both are intended as specular numbers. They are unknown but could be

(1)        

(3)        

              (2)

              (4)

Fig. 3 Task 3
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disclosed by the child whenever wanted. As such, children could think of Bthis

number^ (the number of objects in the box), though it was unknown (Asghari, 2012;

Radford, 2010). More importantly, they could operate on one possible value for the

number holders.

Parnian (a 6-year-old girl): [Skillfully modeling 4 − 3 on his fingers while

comparing blue tower ([a]) and red tower ([a] + 4 − 3)] Red is one [cube] taller.

Leyla: Can you tell me how many are the reds?

Parnian: [After pausing a few seconds] No, I can’t. I didn’t see how you built the

towers.

Leyla: Okay. I give you a clue. The number of blues is ten.

Parnian: [Immediately] Eleven.

Even sometimes, they could operate on more than one possible value.

Sarah: If this ([a] − 3 + 2) is nine, this ([a]) is ten.

Leyla: And if this ([a] − 3 + 2) was five?

Sarah: Six.

Whether thinking of possible values (one at a time) is an indication of the generality

perceived by the child is the subject of the discussion below and the second cycle of the

study. For now, it is important to say that task 3 makes the child aware of the possibility

of the change of structure by forcing the change. Whether the child applies such

restructuring in the absence of such a force is the subject of task 4.

Task 4: the Starting Number Is Known and Small. The starting number is small and

known. The whole expression is within the calculating ability of the child. However,

now, unlike task 1, the child has experienced several restructuring tasks. Here, the task

was to compare [4] + 4 − 1 (red cubes) with [4] (blue cubes).

Leyla: Which group has more cubes?

Sarah: The red one. It has three more cubes [than the blue group].

Leyla: How many cubes does it [the red group] have now?

Sara: [while using her fingers to add 3 to 4] it has seven.

Without restructuring, the order of approaching the task is to calculate the final

answer according to the imposed order of the task and then compare it with the starting

number (see Sarah, task 1). With restructuring, the total change can be calculated first,
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and then, the total number (if needed). This is what Sarah did when the initial arithmetic

structure of the task was changed from ([4] + 4) − 1 to [4] + (4 − 1) and then to 4 + 3.

This is also what Parsa did when he calculated [6] + 3 − 2 at this stage of his work,

while earlier, he had solved all the start-known problems with Bsmall^ numbers by

direct calculations from left to right (see task 1 above). What they did is an indication of

awareness of the possibility of the change of structure. However, it is not an indication

of a free choice of strategy. It is more likely that the similarity of the presentation of the

task with the previous ones (in particular, the unknown-number version) somehow

triggered what they did. We will discuss this point further in the next section.

Discussion

The didactic strategy used in the current study was making the starting number

untouchable during certain known operations. Accepting an untouchable number

would not be as easy as it looks in our reports above. In fact, there were many

occasions, before and after getting used to the idea, where children felt obliged

to make the number touchable to be convinced about the correctness of the

answer by counting the objects inside each box. Thus, when the starting number

was untouchable but knowable and representable on the fingers (task 1), the

child’s approach to the task was hardly predictable. Overall, it seems that if

applying the imposed order of the problem were feasible, the child would choose

the left-to-right approach. Sarah and Parsa successfully solved several of such

problems by direct calculations at the start of the interview process. Thus, the

change of their strategy (task 4) could be due to their exposure to the previous

tasks (say, task 3). However, such tasks could make the child aware of the

possibility of the change of structure, but not necessarily of the suitability of

such a change for the problem at hand. True, task 3 forces the child to

restructure the problem whether it is [6] + 4 − 1 or [7] + 4 − 3. However,

restructuring 6 + 4 − 1 as 6 + (4 − 1) does not necessarily make the calculations

easier for the child (if it does not make it harder). In arithmetic, the proper use of

associativity is a decision that is taken based on each and every three operands

and the numeric relations they have together. It is based on such relations that a

person decides to restructure one expression but not the other. To provide such

awareness, there needs to be a different strategy allowing children to reflect on

different ways of structuring the same number expression. This is where a

structural approach (e.g. Carpenter et al., 2003) might come handy. In a way,

our children learned to restructure without necessarily seeing the structures.

Introduction to the Second Cycle

Here is the outline and the outcome of the first cycle of the study.

Task 1. [6] + 3 − 2 could impel the child to restructure it as [6] + (3 − 2). However, the

starting number was so attached to the problem that something like [4] + 3 − 2 could be

considered as a new problem, not the same problem as [6] + 3 − 2 with a different

starting number.
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Task 2. A big starting number could bring the change of structure to the fore. However,

the whole structure could also collapse because children could miss the numerosity of

the starting number. The starting number was meant to be a specular number, a specific

number for the learner that is begging to be treated as a non-specific number of its kind

(Asghari, 2012).Of course, it would not play its intended role if it misses its specificity.

Task 3 was to resolve this problem.

Task 3. In [a] + 3 − 2, the number of the objects in the box is not known to the child.

However, he or she could apprehend it as a specific whole and disclose the number

whenever wanted. The presentation of the task forces restructuring [a] + 3 − 2 to

[a] + (3 − 2) and then to [a] + 1. As the result of transforming ([a] + 3) − 2 to [a] + 1,

part of the structure (here, + 3 − 2) collapses, but an important part remains un-

changed (here, [a]) and the initial structure is operationally transformed into an

equal structure. Moreover, transforming ([a] + 3) − 2 to [a] + 1 indicates a change of

structure in which neither of the structural expressions ([a] + 3 − 2, ([a] + 3) − 2,

[a] + (+ 3 − 2), and [a] + 1) necessarily stands alone. In the productive sense of the

operational conception, such an equality-preserving restructuring is algebraic, since

it is a trigger—and an indication—of a relational conception of equality (which

might be applied to an arithmetic problem: task 4). However, the problem that we

started with is still present. The question is to what extent the child who has

experienced such transformations also experiences [a] as something that represents

any number (of objects inside the box). From the Bbig^ starting numbers (task 2),

we know that even if the child moves from Bone^ to Bany ,̂ from one specific

number to a set containing that number, the set is restricted to the numbers whose

numerosity can be experienced by the child. From the unknown starting numbers

(task 3), we know that children can think of one (or in some cases, more than one)

possible value (one at a time) for the starting number, but not whether the child

perceives the specific initial number as a single, but indefinite, whole number

(Mason & Pimm, 1984). The problem is how we can discern the extent of the

generality perceived by the child Bwhen any instance is of a constant, unvarying

nature^ (Carraher, Brizuela & Schliemann, 2000, p. 150)—in short, how we know

that the initial specific number has played its role as a specular number; hence, the

second cycle of the study.

The Second Cycle

The first cycle of the present design experiment clarified the notion of operational

algebra as equality-preserving restructurings. However, as far as algebra is concerned,

what is being done is being done on a quantity that is subject to change; this involves a

simultaneous awareness of what is being done and what is being changed. Though the

problem of assessing such awareness is notoriously difficult (Carraher et al., 2000;

Mason, Stephens & Watson, 2009), the main distinguishing feature of the second stage

of the study is to offer a solution. Task 5 was given after all the first four tasks had been

completed.

Task 5: the Starting Number Is Specular. There are two toys; each one has two

boxes in two different colors (Fig. 4). The boxes of one of them are blue and red; both
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boxes contain the same unknown number of foods, say [x]. The boxes of the other toy

are green and yellow; both boxes contain the same unknown number of foods, say [y].

These two unknown numbers, [x] and [y], are not necessarily equal to each other. Leyla

chooses the red box (of the first toy) and the green box (of the second toy), adds four

foods to each one of them, and then removes two foods from each one of them. Each

toy only has access to its own boxes, and each toy chooses the box with more food. The

task is to determine which box each toy chooses:

Helen (a 6-year-old girl): They choose Red and Green.

Leyla: How do you know?

Helen: Because you added four to them and removed two from them.

Using each one of the tasks alone (like task 3), we would have had another

indication of the child’s ability of relational thinking. Could we interpret this as an

indication of the child’s awareness that in the transition from ([a] + 4) − 2 to [a] + 2, the

starting number can vary? By the definition of specularity, the answer could be Byes.^

However, our students do not learn because of our definitions! There is a possibility

that in every single task, the specular starting number is mentally fixed, hence, at the

best, an indication of relational arithmetic. Task 5 was set up to try and rule out this

possibility.

Fig. 4 Task 5
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Task 5 asks the child to compare ([x] + 4) − 2 with [x] and ([y] + 4) − 2 with [y]. Both

[x] and [y] are specific numbers (though kept unknown). Moreover, [x] and [y] are not

necessarily equal to each other. In the transition of ([x] + 4) − 2 to [x] + 2 and ([y] + 4) −

2 to [y] + 2, there is no resort to specificity of [x] and [y], respectively. This is

experiencing both transitions simultaneously as specific cases of the same structural

change. It seems that there is a sense of generality involved in articulating, BBecause

you added four to them and removed two from them.^ This is to see that the total

change would be valid for any starting number, though the range of Bany^ is deter-

mined by one’s (here, Helen’s) conception of the numbers involved.

Concluding Remarks

We presented and examined an approach to algebra that was based on arithmetic. In

essence, like Carpenter et al. (2005) we advocated thinking relationally about equality.

They have tried to foster it structurally. We attempted it operationally and extended

previous research on early algebra to verbal mathematics. We interpreted the opera-

tional conception as the ability of transforming one structure into the other. Using a

series of carefully designed tasks based on the idea of specularity (Asghari , 2012) we

prompted 5–6-year-old children to think operationally in the absence of alphanumeric

symbols. The focus was on the associative property.

We showed the possibility of developing an operational algebraic understanding of

the associative property at the preschool level. In arithmetic, this appears as the ability

of restructuring a given arithmetic expression to an equivalent one. In algebra, this is

the ability of transforming an operation between an unknown and a known ([x] + 4) − 2

into an operation between two knowns: [x] + (4 − 2). Considering that these are what

students need in mental and written methods of calculations (McCallum et al., 2011)

and in a good part of algebra (Wasserman, 2014), our work highlights the surprisingly

high level of what can be experienced by preschool children. More importantly, it is

what the result of this study suggests for Bthe development of algebra^:

In contrast to what Sfard and Linchevski (1994) and Caspi and Sfard (2012) say, our

findings suggest that verbal and operational are not necessarily processual and bound to

numeric computations. They have the potential to foster thinking relationally about

equality with both known and unknown quantities. However, as always, there are some

words of caution.

Due to the purely verbal nature of our study, we could not directly encourage

Bdifferent ways of looking at the same number expression^ that is necessary for the

flexible use of the associative property in arithmetic. In a way, in our tasks, one structure

collapses into the other without any trace. As soon as the numerals come into play, we

can (must) encourage students to see operational transformations as different ways of

structuring the same expression. Such awareness is the sine qua non of the structural

conception of algebra and should be meaningfully linked to the operational conception

via symbols (for some suggestions to link from the operational to the structural, see

Khosroshahi & Asghari, 2016; for the other way round, see Carpenter et al., 2003).

However, with great potential of symbolic representations comes great challenge.

With the advent of written base-ten numerals comes the so-called left-to-right ap-

proach commonly used in early grades. With the equal sign comes its computational
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drive.With the letters for unknown quantities comes Bthe addictive power of algebraic

manipulations^ (Kieran & Sfard, 1999, p. 15). Simply speaking, there is a long

journey from operationally and verbally transforming ([x] + 4) − 2 to [x] + 2 (where

[x] is a specular number) to structurally and symbolically understanding the equality

x + 4 − 2 = x + 2 (where x represents a variable). As one example among many,

consider how in the verbal situation of our design, the operations were automatically

attached to the operands (e.g. add four, remove two), all of which should be kept in

memory (though not reported above, there were many times that we needed to remind

children of the numbers used in the task at hand). In contrast, in a symbolic situation,

the operations and operands are recorded, but children need to learn how to correctly

interpret each and every one of them (that is not as easy as it might look; see

Herscovics & Linchevski, 1994).

What we did was as an exploration into where an algebraic journey of children

might start. Surprisingly, this start can include an experience of working with unknown

quantities through equality-preserving transformations. This also includes an affirma-

tive answer to our research question that whether the idea of specularity can promote an

operational algebraic understanding of associativity in the absence of alphanumeric

symbols. However, we cannot claim that the participants of this study would be able to

use what they experienced later on as primary school students. In fact, even in task 4

and in the middle of their exposure to many similar tasks, we could not unequivocally

predict whether a child would restructure the given problem or not. Believing that

providing an algebraic experience of arithmetic for students needs targeted tasks and,

more importantly, an algebraic mentality, all we wish to claim is that we have offered

both. There is still much to do before the tasks we used in a one-to-one situation can be

adapted for the use in the classroom (for an attempt, see Khosroshahi & Asghari, 2016),

where an algebraic journey would not exist if an algebraic habit of mind is not infused

into school curriculum (Blanton & Kaput, 2003), whether we advocate an operational

or structural approach.
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