1,271 research outputs found

    ARHI (DIRAS 3), an Imprinted Tumor Suppressor Gene, Binds to Importins, and Blocks Nuclear Translocation of Stat3

    Get PDF
    ARHI (DIRAS3) is an imprinted tumor suppressor gene whose expression is lost in the majority of breast and ovarian cancers. Unlike its homologs Ras and Rap, ARHI functions as a tumor suppressor. Our previous study showed that ARHI can interact with transcription activator Stat3 and inhibit its nuclear translocation in human breast and ovarian cancer cells. To identify proteins that interact with ARHI in nuclear translocation, we have performed proteomic analysis and identified several importins that can associate with ARHI. To further explore this novel finding, we have purified 10 GST-importin fusion proteins (importin 7, 8, 13, b1, a1, a3, a5, a6, a7 as well as mutant a1). Using a GST-pull down assay, we found that ARHI can bind strongly to most importins; however, its binding is significantly reduced with an importin a1 mutant which contains an altered nuclear localization signal (NLS) domain. In addition, an ARHI N-terminal deletion mutant (NTD) exhibits much less binding to all importins than does wild type ARHI ARHI and NTD proteins were purified and tested for their ability to inhibit nuclear importation of proteins in HeLa cells. ARHI protein inhibits interaction of Ran-importin complexes with GFP fusion proteins that contain an NLS domain and a beta-like import receptor binding domain, blocking their nuclear localization. Addition of ARHI also blocked nuclear localization of phosphorylated Stat3β. By GST-pull down assays, we found that ARHI could compete for Ran-importins binding. Thus, ARHI-induced disruption of importin binding to cargo proteins including Stat3 could serve as an important regulatory mechanism that contributes to the tumor suppressor function of ARHI

    The European Commission and fiscal governance reform: a strategic actor?

    Get PDF
    Peer review statement: The publishing and review policy for this title is described in its Aims & Scope, url: http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=fwep20The intensification of the financial and economic crisis in Europe has added a new impetus to the debate over the possibilities for securing supranational fiscal integration within the Economic and Monetary Union (EMU). Since the literature on the European Union’s response to the crisis is dominated by the study of intergovernmental politics, this article considers the previously neglected role of the Commission. A framing analysis of the Commission’s crisis discourse is operationalised here, which is supplemented by interviews with senior officials located in the Directorate General for Economic and Financial Affairs (DG ECFIN) during key phases of the crisis. It is found that a supranational reform agenda was never internalised by the Commission. Instead, the Commission acted strategically by framing the crisis around intergovernmental fiscal discipline. These findings suggest that, in line with the ‘new intergovernmentalist’ thesis, supranational institutions themselves may not be as ‘hard-wired’ towards supranationalism as is often assumed

    The role of element type and crossed relation in restructuring difficulty

    Get PDF
    Chunk decomposition is an aspect of problem solving that involves decomposing a pattern into its component parts in order to regroup them into a new pattern. Previous work suggests that the primary source of difficulty in chunk decomposition is whether a problem’s solution requires removing a part that is a meaningful perceptual pattern (termed a chunk) or not (a non-chunk). However, the role of spatial overlap (crossed relation or not) has been ignored in this line of research. Here, we dissociated the role of element type and crossed relation in chunk decomposition problems by employing a Chinese character transformation task. We replicated the finding that when the to-be-removed element is a non-chunk, the problem is more difficult to solve than when the element is a chunk. However, this result held only if the elements had no crossed relation. Relative to non-crossed relation, problems that involved removing elements that overlapped with the remaining character were more difficult to solve irrespective of the element type. We conclude that both element type and crossed relation can cause the difficulty of chunk decomposition and crossed relation plays more important role in preventing people from finding insightful ways to decompose chunk relative to element type

    Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation

    Get PDF
    Development, testing and example applications of the pattern-scaling approach for generating future climate change projections are reported here, with a focus on a particular software application called “ClimGen”. A number of innovations have been implemented, including using exponential and logistic functions of global-mean temperature to represent changes in local precipitation and cloud cover, and interpolation from climate model grids to a finer grid while taking into account land-sea contrasts in the climate change patterns. Of particular significance is a new approach for incorporating changes in the inter-annual variability of monthly precipitation simulated by climate models. This is achieved by diagnosing simulated changes in the shape of the gamma distribution of monthly precipitation totals, applying the pattern-scaling approach to estimate changes in the shape parameter under a future scenario, and then perturbing sequences of observed precipitation anomalies so that their distribution changes according to the projected change in the shape parameter. The approach cannot represent changes to the structure of climate timeseries (e.g. changed autocorrelation or teleconnection patterns) were they to occur, but is shown here to be more successful at representing changes in low precipitation extremes than previous pattern-scaling methods

    Phase 2 Study of Pomalidomide (CC-4047) Monotherapy for Children and Young Adults With Recurrent or Progressive Primary Brain Tumors

    Get PDF
    INTRODUCTION: Treatment of recurrent primary pediatric brain tumors remains a major challenge, with most children succumbing to their disease. We conducted a prospective phase 2 study investigating the safety and efficacy of pomalidomide (POM) in children and young adults with recurrent and progressive primary brain tumors. BACKGROUND: METHODS: Patients with recurrent and progressive high-grade glioma (HGG), diffuse intrinsic pontine glioma (DIPG), ependymoma, or medulloblastoma received POM 2.6 mg/m2/day (the recommended phase 2 dose [RP2D]) on days 1-21 of a 28-day cycle. A Simon’s Optimal 2-stage design was used to determine efficacy. Primary endpoints included objective response (OR) and long-term stable disease (LTSD) rates. Secondary endpoints included duration of response, progression-free survival (PFS), overall survival (OS), and safety. RESULTS: 46 patients were evaluable for response (HGG, n = 19; DIPG, ependymoma, and medulloblastoma, n = 9 each). Two patients with HGG achieved OR or LTSD (10.5% [95% CI, 1.3%-33.1%]; 1 partial response and 1 LTSD) and 1 patient with ependymoma had LTSD (11.1% [95% CI, 0.3%-48.2%]). There were no ORs or LTSD in the DIPG or medulloblastoma cohorts. The median PFS for patients with HGG, DIPG, ependymoma, and medulloblastoma was 7.86, 11.29, 8.43, and 8.43 weeks, respectively. Median OS was 5.06, 3.78, 12.02, and 11.60 months, respectively. Neutropenia was the most common grade 3/4 adverse event. CONCLUSIONS: Treatment with POM monotherapy did not meet the primary measure of success in any cohort. Future studies are needed to evaluate if POM would show efficacy in tumors with specific molecular signatures or in combination with other anticancer agents. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, identifier NCT03257631; EudraCT, identifier 2016-002903-25

    A Bayesian approach for estimating typhoid fever incidence from large-scale facility-based passive surveillance data

    Get PDF
    Decisions about typhoid fever prevention and control are based on estimates of typhoid incidence and their uncertainty. Lack of specific clinical diagnostic criteria, poorly sensitive diagnostic tests, and scarcity of accurate and complete datasets contribute to difficulties in calculating age-specific population-level typhoid incidence. Using data from the Strategic Typhoid Alliance across Africa and Asia program, we integrated demographic censuses, healthcare utilization surveys, facility-based surveillance, and serological surveillance from Malawi, Nepal, and Bangladesh to account for under-detection of cases. We developed a Bayesian approach that adjusts the count of reported blood-culture-positive cases for blood culture detection, blood culture collection, and healthcare seeking—and how these factors vary by age—while combining information from prior published studies. We validated the model using simulated data. The ratio of observed to adjusted incidence rates was 7.7 (95% credible interval [CrI]: 6.0-12.4) in Malawi, 14.4 (95% CrI: 9.3-24.9) in Nepal, and 7.0 (95% CrI: 5.6-9.2) in Bangladesh. The probability of blood culture collection led to the largest adjustment in Malawi, while the probability of seeking healthcare contributed the most in Nepal and Bangladesh; adjustment factors varied by age. Adjusted incidence rates were within or below the seroincidence rate limits of typhoid infection. Estimates of blood-culture-confirmed typhoid fever without these adjustments results in considerable underestimation of the true incidence of typhoid fever. Our approach allows each phase of the reporting process to be synthesized to estimate the adjusted incidence of typhoid fever while correctly characterizing uncertainty, which can inform decision-making for typhoid prevention and control
    corecore