422 research outputs found

    Combustion waves in a model with chain branching reaction and their stability

    Full text link
    In this paper the travelling wave solutions in the adiabatic model with two-step chain branching reaction mechanism are investigated both numerically and analytically in the limit of equal diffusivity of reactant, radicals and heat. The properties of these solutions and their stability are investigated in detail. The behaviour of combustion waves are demonstrated to have similarities with the properties of nonadiabatic one-step combustion waves in that there is a residual amount of fuel left behind the travelling waves and the solutions can exhibit extinction. The difference between the nonadiabatic one-step and adiabatic two-step models is found in the behaviour of the combustion waves near the extinction condition. It is shown that the flame velocity drops down to zero and a standing combustion wave is formed as the extinction condition is reached. Prospects of further work are also discussed.Comment: pages 32, figures 2

    Primary vs. Secondary Antibody Deficiency: Clinical Features and Infection Outcomes of Immunoglobulin Replacement

    Get PDF
    <div><p>Secondary antibody deficiency can occur as a result of haematological malignancies or certain medications, but not much is known about the clinical and immunological features of this group of patients as a whole. Here we describe a cohort of 167 patients with primary or secondary antibody deficiencies on immunoglobulin (Ig)-replacement treatment. The demographics, causes of immunodeficiency, diagnostic delay, clinical and laboratory features, and infection frequency were analysed retrospectively. Chemotherapy for B cell lymphoma and the use of Rituximab, corticosteroids or immunosuppressive medications were the most common causes of secondary antibody deficiency in this cohort. There was no difference in diagnostic delay or bronchiectasis between primary and secondary antibody deficiency patients, and both groups experienced disorders associated with immune dysregulation. Secondary antibody deficiency patients had similar baseline levels of serum IgG, but higher IgM and IgA, and a higher frequency of switched memory B cells than primary antibody deficiency patients. Serious and non-serious infections before and after Ig-replacement were also compared in both groups. Although secondary antibody deficiency patients had more serious infections before initiation of Ig-replacement, treatment resulted in a significant reduction of serious and non-serious infections in both primary and secondary antibody deficiency patients. Patients with secondary antibody deficiency experience similar delays in diagnosis as primary antibody deficiency patients and can also benefit from immunoglobulin-replacement treatment.</p></div

    Spectroscopy of free radicals and radical containing entrance-channel complexes in superfluid helium nano-droplets

    Get PDF
    The spectroscopy of free radicals and radical containing entrance-channel complexes embedded in superfluid helium nano-droplets is reviewed. The collection of dopants inside individual droplets in the beam represents a micro-canonical ensemble, and as such each droplet may be considered an isolated cryo-reactor. The unique properties of the droplets, namely their low temperature (0.4 K) and fast cooling rates (1016\sim10^{16} K s1^{-1}) provides novel opportunities for the formation and high-resolution studies of molecular complexes containing one or more free radicals. The production methods of radicals are discussed in light of their applicability for embedding the radicals in helium droplets. The spectroscopic studies performed to date on molecular radicals and on entrance / exit-channel complexes of radicals with stable molecules are detailed. The observed complexes provide new information on the potential energy surfaces of several fundamental chemical reactions and on the intermolecular interactions present in open-shell systems. Prospects of further experiments of radicals embedded in helium droplets are discussed, especially the possibilities to prepare and study high-energy structures and their controlled manipulation, as well as the possibility of fundamental physics experiments.Comment: 25 pages, 12 figures, 4 tables (RevTeX

    Time-delayed spread of viruses in growing plaques

    Get PDF
    The spread of viruses in growing plaques predicted by classical models is greater than that measured experimentally. There is a widespread belief that this discrepancy is due to biological factors. Here we show that the observed speeds can be satisfactorily predicted by a purely physical model that takes into account the delay time due to virus reproduction inside infected cells. No free or adjustable parameters are used

    IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection

    Get PDF
    Funding: This work was funded by a Career Development Fellowship (1028634) and a project grant (GRNT1028641) awarded to AHa by the Australian National Health & Medical Research Council (NHMRC). IS was supported by The University of Queensland Centennial and IPRS Scholarships. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Case series: convalescent plasma therapy for patients with COVID-19 and primary antibody deficiency

    Get PDF
    Patients with primary antibody deficiency are at risk for severe and in many cases for prolonged COVID-19. Convalescent plasma treatment of immunocompromised individuals could be an option especially in countries with limited access to monoclonal antibody therapies. While studies in immunocompetent COVID19 patients have demonstrated only a limited benefit, evidence for the safety, timing, and effectiveness of this treatment in antibody-deficient patients is lacking. Here, we describe 16 cases with primary antibody deficiency treated with convalescent plasma in four medical centers. In our cohort, treatment was associated with a reduction in viral load and improvement of clinical symptoms, even when applied over a week after onset of infection. There were no relevant side effects besides a short-term fever reaction in one patient. Longitudinal full-genome sequencing revealed the emergence of mutations in the viral genome, potentially conferring an antibody escape in one patient with persistent viral RNA shedding upon plasma treatment. However, he resolved the infection after a second course of plasma treatment. Thus, our data suggest a therapeutic benefit of convalescent plasma treatment in patients with primary antibody deficiency even months after infection. While it appears to be safe, PCR follow-up for SARS-CoV-2 is advisable and early re-treatment might be considered in patients with persistent viral shedding

    Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer

    No full text
    Early-onset prostate cancer (EO-PCA) represents the earliest clinical manifestation of prostate cancer. To compare the genomic alteration landscapes of EO-PCA with "classical" (elderly-onset) PCA, we performed deep sequencing-based genomics analyses in 11 tumors diagnosed at young age, and pursued comparative assessments with seven elderly-onset PCA genomes. Remarkable age-related differences in structural rearrangement (SR) formation became evident, suggesting distinct disease pathomechanisms. Whereas EO-PCAs harbored a prevalence of balanced SRs, with a specific abundance of androgen-regulated ETS gene fusions including TMPRSS2:ERG, elderly-onset PCAs displayed primarily non-androgen-associated SRs. Data from a validation cohort of > 10,000 patients showed age-dependent androgen receptor levels and a prevalence of SRs affecting androgen-regulated genes, further substantiating the activity of a characteristic "androgen-type" pathomechanism in EO-PCA
    corecore