531 research outputs found

    Crystal structure of lignin peroxidase.

    Full text link

    Spatially resolved metabolic distribution for unraveling the physiological change and responses in tomato fruit using matrix-assisted laser desorption/ionization–mass spectrometry imaging (MALDI–MSI)

    Get PDF
    Information on spatiotemporal metabolic behavior is indispensable for a precise understanding of physiological changes and responses, including those of ripening processes and wounding stress, in fruit, but such information is still limited. Here, we visualized the spatial distribution of metabolites within tissue sections of tomato (Solanum lycopersicum L.) fruit using a matrix-assisted laser desorption/ionization–mass spectrometry imaging (MALDI–MSI) technique combined with a matrix sublimation/recrystallization method. This technique elucidated the unique distribution patterns of more than 30 metabolite-derived ions, including primary and secondary metabolites, simultaneously. To investigate spatiotemporal metabolic alterations during physiological changes at the whole-tissue level, MALDI–MSI was performed using the different ripening phenotypes of mature green and mature red tomato fruits. Although apparent alterations in the localization and intensity of many detected metabolites were not observed between the two tomatoes, the amounts of glutamate and adenosine monophosphate, umami compounds, increased in both mesocarp and locule regions during the ripening process. In contrast, malate, a sour compound, decreased in both regions. MALDI–MSI was also applied to evaluate more local metabolic responses to wounding stress. Accumulations of a glycoalkaloid, tomatine, and a low level of its glycosylated metabolite, esculeoside A, were found in the wound region where cell death had been induced. Their inverse levels were observed in non-wounded regions. Furthermore, the amounts of both compounds differed in the developmental stages. Thus, our MALDI–MSI technique increased the understanding of the physiological changes and responses of tomato fruit through the determination of spatiotemporally resolved metabolic alterations

    Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii

    Get PDF
    The degradation of the textile dye indigo with purified laccases from the fungi Trametes hirsuta (THL1 and THL2) and Sclerotium rolfsii (SRL1) was studied. All laccases were able to oxidize indigo yielding isatin (indole-2,3-dione), which was further decomposed to anthranilic acid (2-aminobenzoic acid). Based on the oxygen consumption rate of the laccases during indigo degradation, a potential mechanism for the oxidation of indigo involving the step-wise abstraction of four electrons from indigo by the enzyme was suggested. Comparing the effect of the known redox-mediators acetosyringone, 1-hydroxybenzotriazole (HOBT) and 4-hydroxybenzenesulfonic acid (PHBS) on laccase-catalyzed degradation of indigo, we found a maximum of about 30% increase in the oxidation rate of indigo with SRL1 and acetosyringone. The particle size of indigo agglomerates after laccase treatment was influenced by the origin of the laccase preparation and by the incubation time. Diameter distributions were found to have one maximum and compared to the indigo particle size distribution of the control, for all laccases, the indigo agglomerates seemed to have shifted to smaller diameters. Bleaching of fabrics by the laccases (based on K/S values) correlated with the release of indigo degradation products. (C) 2001 Elsevier Science BY. All rights reserved

    A Chemometrics-driven Strategy for the Bioactivity Evaluation of Complex Multicomponent Systems and the Effective Selection of Bioactivity-predictive Chemical Combinations

    Get PDF
    Although understanding their chemical composition is vital for accurately predicting the bioactivity of multicomponent drugs, nutraceuticals, and foods, no analytical approach exists to easily predict the bioactivity of multicomponent systems from complex behaviors of multiple coexisting factors. We herein represent a metabolic profiling (MP) strategy for evaluating bioactivity in systems containing various small molecules. Composition profiles of diverse bioactive herbal samples from 21 green tea extract (GTE) panels were obtained by a high-throughput, non-targeted analytical procedure. This employed the matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) technique, using 1,5-diaminonaphthalene (1,5-DAN) as the optical matrix for detecting GTE-derived components. Multivariate statistical analyses revealed differences among the GTEs in their antioxidant activity, oxygen radical absorbance capacity (ORAC). A reliable bioactivity-prediction model was constructed to predict the ORAC of diverse GTEs from their compositional balance. This chemometric procedure allowed the evaluation of GTE bioactivity by multicomponent rather than single-component information. The bioactivity could be easily evaluated by calculating the summed abundance of a few selected components that contributed most to constructing the prediction model. 1,5-DAN-MALDI-MS-MP, using diverse bioactive sample panels, represents a promising strategy for screening bioactivity-predictive multicomponent factors and selecting effective bioactivity-predictive chemical combinations for crude multicomponent systems

    The effect of solvent on the catalytic properties of microperoxidase-11

    Get PDF
    peer-reviewedThe effect of a range of solvents on the catalytic oxidation of methyl phenyl sulfide to methyl phenyl sulfoxide by MP-11 and by a cyclodextrin derivative of MP-11 was examined. The addition of low concentrations of alcohols enhanced the initial rate of sulfoxidation, most likely due to dispersion of MP-11 aggregates. Higher alcohol concentrations resulted in a decrease in activity arising from solvation of the hydrophobic sulfide, disrupting binding to the catalyst. In alcohols, the yield of product was decreased due to increased rates of MP-11 deactivation via the formation of aldehydes (for primary alcohols) or by peroxide-based deactivation. The catalytic activity of the cyclodextrin modified MP-11 was similar to that of MP-11 itself, demonstrating that it is the N-terminal side of MP-11 which is the determinant of catalytic activity.ACCEPTEDpeer-reviewe

    Continuous fungal treatment of non-sterile veterinary hospital effluent: pharmaceuticals removal and microbial community assessment

    Get PDF
    Source point treatment of effluents with a high load of pharmaceutical active compounds (PhACs), such as hospital wastewater, is a matter of discussion among the scientific community. Fungal treatments have been reported to be successful in degrading this type of pollutants and, therefore, the white-rot fungus Trametes versicolor was applied for the removal of PhACs from veterinary hospital wastewater. Sixty-six percent removal was achieved in a non-sterile batch bioreactor inoculated with T. versicolor pellets. On the other hand, the study of microbial communities by means of DGGE and phylogenetic analyses led us to identify some microbial interactions and helped us moving to a continuous process. PhAC removal efficiency achieved in the fungal treatment operated in non-sterile continuous mode was 44 % after adjusting the C/N ratio with respect to the previously calculated one for sterile treatments. Fungal and bacterial communities in the continuous bioreactors were monitored as well.Authors want to acknowledge the UAB veterinary hospital staff for their kind permission and help for the samplings. This work has been funded by the Spanish Ministry of Economy and Competitiveness and FEDER (projects CTM2013-48545-C2 and AIB2010PT-00169) and supported by the Generalitat de Catalunya (Consolidated Research Groups 2014-SGR-476 and 2014-SGR-291). The Department of Chemical Engineering of the Universitat Autonoma de Barcelona (UAB) is a member of the Xarxa de Referencia en Biotecnologia de la Generalitat de Catalunya. M. Badia-Fabregat and D. Lucas acknowledge the predoctoral grants from UAB and from the Spanish Ministry of Education, Culture and Sports (AP-2010-4926), respectively. The authors also thank the Portuguese Foundation for Science and Technology (FCT) Strategic Project PEst-OE/EQB/LA0023/2013, Project FCOMP-01-0124-FEDER-027462 co-funded by Operational Competitiveness Programme, FEDER, and Project "BioEnv-Biotechnology and Bioengineering for a sustainable world," REF. NORTE-07-0124-FEDER-000048, co-funded by Programa Operacional Regional do Norte (ON.2 - O Novo Norte), QREN, FEDER

    Oxalic acid, versatile peroxidase secretion and chelating ability of Bjerkandera fumosa in rich and limited culture conditions

    Get PDF
    Efficient ligninolytic systems of wood-degrading fungi include not only oxidizing enzymes, but also low-molecular-weight effectors. The ability of Bjerkandera fumosa to secrete oxalic acid and versatile peroxidase (VP) in nitrogen-rich and nitrogen-limited media was studied. Higher activity of VP was determined in the nitrogen-limited media but greater concentration of oxalic acid was observed in the cultures of B. fumosa without nitrogen limitation. Ferric ions chelating ability of Bjerkandera fumosa studied in ferric ions limited media was correlated with the increased level of oxalic acid. The presence of hydroxamate-type siderophores in B. fumosa media were also detected. Oxalate decarboxylase was found to be responsible for regulation of oxalic acid concentration in the tested B. fumosa cultures
    • 

    corecore