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A Chemometrics-driven Strategy 
for the Bioactivity Evaluation of 
Complex Multicomponent Systems 
and the Effective Selection of 
Bioactivity-predictive Chemical 
Combinations
Yoshinori Fujimura1, Chihiro Kawano1, Ayaka Maeda-Murayama1, Asako Nakamura1, Akiko 
Koike-Miki1, Daichi Yukihira1, Eisuke Hayakawa2, Takanori Ishii1, Hirofumi Tachibana1,3, 
Hiroyuki Wariishi1,3,4 & Daisuke Miura1

Although understanding their chemical composition is vital for accurately predicting the bioactivity 
of multicomponent drugs, nutraceuticals, and foods, no analytical approach exists to easily predict 
the bioactivity of multicomponent systems from complex behaviors of multiple coexisting factors. We 
herein represent a metabolic profiling (MP) strategy for evaluating bioactivity in systems containing 
various small molecules. Composition profiles of diverse bioactive herbal samples from 21 green 
tea extract (GTE) panels were obtained by a high-throughput, non-targeted analytical procedure. 
This employed the matrix-assisted laser desorption ionization–mass spectrometry (MALDI–MS) 
technique, using 1,5-diaminonaphthalene (1,5-DAN) as the optical matrix for detecting GTE-derived 
components. Multivariate statistical analyses revealed differences among the GTEs in their antioxidant 
activity, oxygen radical absorbance capacity (ORAC). A reliable bioactivity-prediction model was 
constructed to predict the ORAC of diverse GTEs from their compositional balance. This chemometric 
procedure allowed the evaluation of GTE bioactivity by multicomponent rather than single-component 
information. The bioactivity could be easily evaluated by calculating the summed abundance of a 
few selected components that contributed most to constructing the prediction model. 1,5-DAN-
MALDI–MS-MP, using diverse bioactive sample panels, represents a promising strategy for screening 
bioactivity-predictive multicomponent factors and selecting effective bioactivity-predictive chemical 
combinations for crude multicomponent systems.

Various health-promoting physiological effects of multicomponent pharmaceuticals and nutraceuticals are gen-
erally evaluated by the activity and abundance of a single specific component (i.e. a low-molecular-weight bio-
active compound); however, to accurately predict the real bioactivity of complicated multicomponent systems, 
the simultaneous evaluation of multiple coexisting factors is required1. Nevertheless, such an analytical approach 
remains to be established. Among the many analytical platforms, mass spectrometry (MS) is the most sensitive 
and selective technique for simultaneously determining a broad range of low-molecular-weight metabolites in 
medicinal plants, agricultural products, and foods, and thus it is the method of choice for metabolomic research. 
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Metabolic profiling (MP) is often used to evaluate the genotype, origin, quality, and nutraceutical value of medic-
inal herbs and agricultural products by their compositional balance on the basis of the relative abundance of each 
metabolite to the total abundance of all metabolites2–4. Additionally, such a technique enables us to theoretically 
calculate the relative contribution of all multicomponent factors detected in crude samples to the total bioactiv-
ity. Considering the principle of this methodology, it is expected that MP may become an effective strategy for 
obtaining a comprehensive understanding of the physiological activity of multicomponent drugs and nutraceu-
ticals. However, to date, there has been little research on the use of MP to compare or predict their bioactivity.

Conventional methods in which MS is coupled with pre-separation techniques, i.e. gas chromatography 
(GC)–MS and liquid chromatography (LC)–MS, have achieved great success in non-targeted applications of MP, 
but their major drawback lies in their limited ability to analyse large sets of samples and detect changes in their 
composition in a fast and simple way5. There is a clear need for more rapid, high-throughput MS approaches for 
MP. Currently, direct MS analysis is one of the most popular choices to achieve the maximum high-throughput 
production of information from the largest possible number of samples. Any separation step prior to MS detec-
tion is avoided, and thus direct analysis of the samples is achieved. Matrix-assisted laser desorption ioniza-
tion (MALDI), a widely available ionization method used for direct MS analysis, offers several advantages for 
metabolite analysis, being a highly sensitive, high-throughput, and low sample-consuming (approximately 1 µL) 
technique compared with other ionization methods. However, the low ionization efficiency and the interfer-
ence of matrix peaks from the use of conventional matrices hinder the detection of metabolite peaks. Recently, 
9-aminoacridine (9-AA) was reported as a suitable matrix for metabolite analysis6, 7. When 9-AA was used in 
negative ion mode, only a few peaks derived from the matrix were observed in the low-mass range (m/z ≈ 500). In 
addition, the excellent ionization efficiency of 9-AA for important cellular metabolites (on the order of attomoles) 
was demonstrated8. We have developed a methodology for the rapid and direct analysis of cellular metabolites by 
MALDI–MS for high-throughput and non-targeted MP, and succeeded in applying this technique to evaluate the 
anti-cancer effect of a green tea polyphenol by visualizing metabolomic differences6. However, it remains unclear 
whether this technique can evaluate bioactivity through multicomponent information on crude herbal samples, 
such as green tea extract (GTE). Green tea is one of the most widely consumed beverages in the world and has 
shown various health-promoting effects9, 10. Therefore, in this study, we attempted to establish a rapid and simple 
MALDI–MS-MP technique for the chemometrics-driven evaluation of bioactivity based on composition profiles 
using diverse GTE panels with different antioxidant activity. Furthermore, this work investigated the applicability 
of such a technique for the selection of bioactivity-predictive or -discriminative multicomponent factors and the 
determination of a bioactivity-predictive chemical combination from multivariate data obtained by MALDI–MS 
measurement.

Results
Matrix screening-driven MALDI–MS-MP technique for quality evaluation of diverse GTEs 
with different properties. Herein, we aimed to develop a MALDI–MS system suitable for the chemomet-
rics-driven evaluation of the bioactivity of diverse GTE panels (Fig. 1). In MALDI–MS, the matrix preparation, 
including the selection of the matrix and solvent, is a critical step to ensure efficient ionization of the analyte, 
because the detection of the analyte is completely dependent on these conditions11. Because little is known about 
which matrices can simultaneously ionize multiple compounds from herbal extracts, including various phyto-
chemicals, we first screened the optimum matrix for detecting approximately 70 representative phytochemicals 

Figure 1. Experimental design for chemometrics-based evaluation of bioactivity of 21 GTE panels representing 
multicomponent systems.
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(Supplementary Table S1) among four potentially high-performing matrices previously reported7, 12, 13. A solution 
of each matrix in 100% methanol (MeOH) or acetone was mixed with an equal volume of a phytochemical solu-
tion. This mixture was spotted onto a stainless steel MALDI sample plate and analyzed by MALDI-TOF-MS in the 
negative ionization mode. All the resulting spectral data were processed using an in-house script (Supplementary 
Fig. S1) that simultaneously detects authentic phytochemical peaks in their basic, deprotonated ion form [M–H]− 
while effectively excluding various matrix background peaks. The obtained information on the intensity of all the 
peaks was converted to a heatmap to visually compare the extent of each ionization (Fig. 2A and Supplementary 
Table S1). The detectability of the phytochemicals was differed among the four matrices, namely 9-AA, 1,5-diami-
nonaphthalene (1,5-DAN), norharmane (nor-Ho), and harmine. Based on the ionization rate and the number 
of phytochemicals successfully ionized, the best ionization performance was achieved by 1,5-DAN, and the ace-
tone (Fig. 2A) provide a better solvent than MeOH (Supplementary Fig. S2). The ionization efficiency of the 
phytochemicals varied widely depending on their chemical structures (Supplementary Fig. S3). Furthermore, 
1,5-DAN obtained the greatest number of peaks (138 following background subtraction) from the crude aqueous 
GTEs, many more than were detected by 9-AA (Fig. 2B). In fact, while 9-AA is the most commonly used matrix 
in non-targeted metabolomic analysis6, 8, it showed the worst detection performance in this study (Fig. 2A and 
Supplementary Fig. S2). To examine the potential of 1,5-DAN as a matrix for the acquisition of the chemical 
compositions and the subsequent quality evaluation of diverse GTEs, MALDI–MS measurements and the sub-
sequent multivariate statistical analysis were performed using 21 distinct GTEs from 7 representative Japanese 
green tea cultivars (Camellia sinensis L. and C. sinensis x C. taliensis) cropped during 3 different picking seasons 
(Table 1 and Supplementary Table S2). The score plot of the principal component analysis (PCA), an unsuper-
vised multivariate statistical analysis, showed clear clusters, one consisting of the Sunrouge (SR) cultivar (C. sin-
ensis x C. taliensis), and the other consisting of the remaining cultivars (Camellia sinensis L.) (Fig. 2C). The cluster 
separation of the cultivars was observed along the PC2 axis (1,5-DAN, right panel). Regardless of whether the 
SR cultivar was included or excluded (leaving 21 or 18 GTEs, respectively), clusters related to the picking season 
could be observed along PC1 (1,5-DAN, left panel). These results strongly suggest that the compositional differ-
ences among the GTEs can account for the different cultivars and picking seasons. In contrast, no such cluster 
formation was observed in the MALDI–MS-MP results when using 9-AA as a matrix (Fig. 2C, right panel). These 
results show that phytochemical-based matrix screening is an effective strategy for selecting the optimal matrix, 
in this case 1,5-DAN, for the analysis of the chemical compositions of diverse GTEs and their quality evaluation.

Applicability of 1,5-DAN-based MALDI–MS-MP for bioactivity evaluation of diverse GTEs with 
different antioxidant activity. To determine whether the bioactivity of diverse GTE panels could be eval-
uated by 1,5-DAN-based MALDI–MS-MP, we measured their oxygen radical absorbance capacity (ORAC) val-
ues. This form of antioxidant activity is known as one of the major bioactivities of GTEs9, 14, 15. The ORAC values 
were found to clearly differ among the 21 GTEs (Table 1). Generally, polyphenols are known to be among the 
bioactive factors with the highest ORAC15. Herein, we analyzed the relationship between the ORAC values and 
the total polyphenol contents of the 21 GTEs (Fig. 3A). A positive correlation was observed, and the coefficient 
of determination was 0.532. This value suggests that the observed polyphenol information alone is insufficient 
for effectively explaining ORAC values of GTEs, and information on the other components present in GTEs is 
required. In contrast, using orthogonal partial least-squares (OPLS) regression analysis (a form of supervised 
multivariate statistical analysis), a reliable bioactivity-prediction model to predict the ORAC of diverse GTE 
panels was constructed on the basis of their composition profiles obtained from the 1,5-DAN-MALDI–MS meas-
urements. For this model, the goodness-of-fit parameter R2 = 0.975 (corresponding to the coefficient of deter-
mination), the goodness-of-prediction parameter Q2 = 0.937, and the root mean squared error of the prediction 
(RMSEP) = 8.2% (Fig. 3B and Supplementary Table S2). Furthermore, information on the composition profiles 
was also found to be sufficient for a predictive evaluation of the total polyphenol contents (Fig. 3C). These results 
suggest that MALDI–MS can be used to obtain multivariate information on GTEs, namely their compositional 
balance, which may serve as a more effective indicator for explaining (either predicting or discriminating) their 
bioactivity (namely ORAC) and the related property, total polyphenol content.

In this model, the compounds with the highest predictive power for ORAC were also distinguished by their 
variable-importance-in-projection (VIP) values. The 40 component peaks with large VIP values (>1) cor-
responded to the compounds that were most predictive for bioactivity (Fig. 3D and Supplementary Table S3). 
Among these component peaks, representative relationships between the top-4 peak intensities and the 
observed ORAC values in all GTEs are shown in Fig. 3E. These 4 components, labelled V01 to V04, are major 
green tea catechins, (−)-epicatechin (EC), (−)-epigallocatechin (EGC), (−)-epicatechin-3-O-gallate (ECG), 
and (−)-epigallocatechin-3-O-gallate (EGCG), which were all included in the phytochemical library used in 
the matrix screening (Fig. 2A and Supplementary Fig. S2). All four components were detected simultaneously 
with their epimerized forms, (−)-catechin (C), (−)-gallocatechin (GC), (−)-catechin-3-O-gallate (CG), and 
(−)-gallocatechin-3-O-gallate (GCG), respectively, which were newly generated by the hot-water extraction of 
the tea leaves. The best correlation between intensity and ORAC was observed for the V01 component (cor-
responding to ECG/CG), but the coefficient of determination was nonetheless relatively low (failing to satisfy 
R2 > 0.7). The combined peak intensity of all 4 compounds, i.e. V01 to V04, proved to be less strongly correlated 
with ORAC than the intensity of V01 alone (Fig. 3F, left panel). This tendency was also observed in the concentra-
tion data for these compounds (Supplementary Fig. S4). Furthermore, a combination of 25 components (all hav-
ing a positive correlation with ORAC and a large VIP value (>1)), as well as the combination of all 85 positively 
correlated components, also showed relatively low correlations (failing to satisfy R2 > 0.7) (Fig. 3F, middle and 
right panels). These results suggest that while there is a potential relationship between MALDI–MS datasets and 
ORAC values, the absolute abundance of each component with a large VIP value (>1) or the simple summation 
thereof are not always effective for explaining the ORAC of diverse GTEs. In contrast to this partial component 
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information, the comprehensive compositional balance, i.e. the relative abundance of all GTE-derived compo-
nents, can be successfully used in OPLS regression to evaluate the bioactivity of GTEs. Taken together, these 
findings indicate that 1,5-DAN-MALDI–MS-MP is a viable strategy for the bioactive evaluation of diverse sample 
panels representing crude multicomponent systems.

Strategy for effectively selecting candidates for bioactive chemical combinations from 
bioactivity-predicting model data. Compared with the absolute abundance of a single component, the 

Figure 2. Metabolic profiling-based evaluation of GTE quality using MALDI–MS system with matrix 
screening. (A) Heatmap analysis showing the different ionization rates of the 72 phytochemicals by the 4 
matrices, with the chemical structures of the matrices shown on the right. (B) Mass spectra for GTE–matrix 
mixtures (upper panels) or isolated matrices (lower panels) (peak heights represent the relative signal 
intensities, where the intensity of the strongest peak is 100%). The total number of peaks detected by each 
matrix is shown. (C) PCA score plot showing different clusters of MS profiles, based on the attributes of picking 
seasons and cultivars.
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relative abundance of all coexisting multicomponent factors was found to be more predictive and discriminative 
information for the bioactivity evaluation of GTEs. In most cases, evaluation of the attributes of crude samples 
in research on pharmaceuticals, nutraceuticals, and functional foods has focused on the absolute abundance 
of a single component as a biomarker1, while the importance of multicomponent information has mostly been 
neglected. In addition to the chemometric approach for applying such information to the evaluation and under-
standing of physiological activity, the development of a methodology for effectively selecting a meaningful com-
bination of components in crude sample systems, on a sound theoretical basis, remains a challenge. To further 
examine the utility of MALDI–MS-derived multivariate data, herein, we attempted to use these data to select 
bioactivity-predictive combinations of components. Firstly, we screened various combinations of 4 components, 
in which each component was drawn from those with large VIP values (>1), in terms of their contribution to the 
construction of an ORAC-prediction model (Supplementary Table S3). Since there were 40 eligible components 
(i.e. V01–V40), each 4-component combination represented 10% of this group. For each combination, three 
correlation measures were calculated, namely the summed intensity of the 4 compounds (Intensity), the relative 
value of the summed intensity (Relative), and its ranked score (Score), and the correlations of each measure with 
the ORAC values were investigated. Among the various combinations (Supplementary Table S4), those exhibiting 
the highest correlations with ORAC are shown in Fig. 4A. Although the correlation of the combination of com-
ponents with the top-4 VIP values (V01, V02, V03, and V04) was low (Intensity: R2 = 0.486, Relative: R2 = 0.561, 
Score: R2 = 0.510), combinations of the other four components (Intensity: V01 + V03 + V09 + V24, Relative: 
V01 + V03 + V09 + V23, Score: V03 + V08 + V09 + V23) showed a much higher correlation value (Intensity: 
R2 = 0.828, Relative: R2 = 0.835, Score: R2 = 0.803). Among the three measures, the Relative value thus showed 
the best correlation. Furthermore, this combination showed a higher correlation than any of its individual com-
ponents (Fig. 4B, Relative data; Supplementary Table S4, Intensity and Score data). These results suggest that the 
summed abundance of 4 carefully selected components (Relative: V01 + V03 + V09 + V23) can be more predic-
tive and discriminative information for the bioactive evaluation of diverse GTE panels than the abundance of any 
single component.

Next, we attempted to create an ORAC-correlated chart using this multicomponent information to help 
readers to intuitively and easily understand these complex chemometric data. To visually express the combi-
national information contained in Fig. 4A, we constructed a radar chart reflecting the abundance of each com-
ponent. A representative section of this ORAC-correlative chart, using the Relative data of the combination 
(V01 + V03 + V09 + V23) for nine GTEs, is illustrated in Fig. 4C (the charts for all GTEs and both Intensity and 
Score data are shown in Supplementary Fig. S5). This radar chart visually confirms the relationship between the 
intensities and the observed ORAC values. In contrast, no such close relationship was observed for the combina-
tion (V01 + V02 + V03 + V04), which had a low correlation value (Supplementary Fig. S6). These results suggest 
that we can intuitively but rationally assess the ORAC values of diverse GTE panels through post-processing the 
compositional information extracted from OPLS regression analysis (Supplementary Fig. S7). In summary, we 
have successfully developed a chemometric methodology capable of rationally selecting, by intuitive visualisation, 

Name Cultivar
Picking 
season ORAC Rank

ORAC (μM 
TE/L)

Polyphenol (mg 
GAE/mL)

AT1 Asatsuyu 1st 19 35,647 1.93

AT2 Asatsuyu 2nd 15 38,661 2.11

AT3 Asatsuyu 3rd 3 51,482 2.54

BF1 Benifuki 1st 10 42,552 2.04

BF2 Benifuki 2nd 1 65,085 2.56

BF3 Benifuki 3rd 2 55,612 2.54

KM1 Kanayamidori 1st 7 44,400 2.00

KM2 Kanayamidori 2nd 9 43,107 2.11

KM3 Kanayamidori 3rd 4 48,544 2.41

SM1 Saemidori 1st 21 25,445 1.96

SM2 Saemidori 2nd 13 40,191 2.13

SM3 Saemidori 3rd 6 46,160 2.33

SR1 Sunrouge 1st 16 37,930 2.44

SR2 Sunrouge 2nd 11 42,436 2.33

SR3 Sunrouge 3rd 14 38,953 2.17

YB1 Yabukita 1st 20 34,246 2.12

YB2 Yabukita 2nd 18 36,545 2.13

YB3 Yabukita 3rd 12 41,729 2.34

YM1 Yutakamidori 1st 17 37,746 2.21

YM2 Yutakamidori 2nd 8 43,496 2.28

YM3 Yutakamidori 3rd 5 47,566 2.65

Table 1. Ranking of anti-oxidant activity of 21 GTEs, consisting of 7 distinct cultivars harvested at 3 different 
picking seasons. Bold letters indicate three representative GTEs, corresponding to the highest, the middle or the 
lowest rank of ORAC values.
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an ORAC-correlated chemical combination from MALDI–MS-derived multivariate data of diverse bioactive 
GTE panels.

Discussion
In this study, we demonstrated for the first time that the MALDI–MS-MP technique could be used to evaluate the 
antioxidant activity of diverse GTE panels based on their compositional balance, and select an effective chemical 

Figure 3. Construction of bioactivity-prediction model to predict the anti-oxidant activity of GTEs based on 
their composition profiles. (A) Correlation between ORAC and total polyphenol content. ORAC values are 
presented as Trolox equivalents (TE). Total polyphenol contents are presented as gallic acid equivalents (GAE). 
Models for predicting (B) ORAC or (C) total polyphenol content were calculated from the MALDI–MS datasets 
of 21 GTEs, including 13 training (black triangles) and 8 test (blue squares) sets. (D) Bar chart showing the 
influence of variables used to create the ORAC-prediction model for GTEs (Y-axis is the value of variable-
importance-in-projection, VIP). Forty variables with large VIP values (>1) were extracted. Orange bars 
indicate positive correlations between the intensity of the component and ORAC. Purple bars indicate negative 
correlations. (E) Correlations between ORAC and the intensity of each of the top-4 components with the largest 
VIP values (>1). (F) Correlations between ORAC and the summed abundances of multiple components. Left 
panel: combination of the above-mentioned top-4-VIP components. Middle panel: combination of the 25 
positively correlated components with the largest VIP values (>1). Right panel: combination of all 85 positively 
correlated components from among the 149 total components.
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combination able to predict the bioactivity. In pharmaceutical, nutraceutical, and food functionality research, the 
conventional evaluation method for bioactivity, targeted analysis, attempts to predict the total bioactivity of entire 
samples by measuring the activity and abundance of a single component. However, this approach carries a risk of 
overestimating or underestimating bioactivity by neglecting the potential interfering effects of multiple coexisting 
factors. In addition, such an approach cannot easily calculate the relative contribution of all coexisting factors to 
the total bioactivity of entire samples. Furthermore, the screening of bioactivity-related chemical combinations 
from crude samples is generally time-consuming, expensive, and labour-intensive due to multiple, repetitive 
processes of fractionation and bioassay. The results of this study suggested that our chemometrics-based and 
non-targeted MP approach, using multiple GTE panels with diverse bioactivity, was able to overcome these draw-
backs (Supplementary Fig. S8).

Unlike the traditional chromatography-coupled MS platforms (LC–MS and GC–MS) used frequently in MP 
research, it is expected that MALDI–MS, a direct analytical system, may allow a more rapid, high-throughput 
MP of the largest possible number of samples5. There have been several reports of the application of MALDI–MS 

Figure 4. Chemometrics-driven selection of bioactivity-correlated chemical combination in GTEs and 
visualization of observed ORAC values using the selected combination. (A) The highest correlation was found 
between observed ORAC value and the summed abundance (Intensity) of 4 components as a bioactivity-
predictive combination. Correlations based on the relative value (Relative; Maximum: 100, Minimum: 1) and 
ranked scored value (Score; Top: 21, Bottom: 1) of the summed abundance are also shown. (B) Correlation of 
Relative value of each individual component with ORAC. (C) Observed ORAC values of GTEs visualized as 
radar charts using information from the 4 selected components. Selected representative charts of the GTEs are 
shown, demonstrating that ORAC can be visually estimated from the 4 component abundances.

http://S8
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to protein and peptide profiling for the quality evaluation of crude food samples, such as beers16, milk, hazel-
nut17, and peanut18, but metabolomic applications have proven more challenging. The choice of matrix is one of 
the most important issues affecting the non-targeted metabolomic analysis of crude extracts. Although several 
matrices have been reported for the targeted analysis of a single specific component19, little is known about which 
matrices can simultaneously ionize various low-molecular-weight components from crude GTE samples. To our 
knowledge, the present study was the first to screen matrices to identify the optimum matrix for ionizing the 72 
representative phytochemicals at a reliable standard level. As shown in Supplementary Fig. S3, the ionization effi-
ciency of the phytochemicals varied widely depending on their chemical structures. 1,5-DAN-based MALDI–MS 
system enabled to preferably ionize flavonone, flavonol, flavan-3-ol, and isoflavone. Intriguingly, their ionization 
efficiency was strongly dependent on both the position and number of hydroxyl group. In GTE samples, flavan-
3-ols, catechins, were highly detected as ORAC-correlated compounds with the highest VIP values (>1). On the 
other hand, zero or low detectability was observed in anthocyanidin, carotenoids, disaccharides, steroidal alka-
loids, phytosterol, oxylipin, and aryl isothiocyanate. It was known that these compounds ware partially detected 
in the positive ionization mode using other matrices. The present 1,5-DAN-MALDI–MS system is negative 
ionization mode, and combination of both ionization modes may lead to further improvement of detectability. 
At least, this matrix screening proved an effective strategy for detecting GTE-derived compounds at the crude 
sample level, and the MS approach based on their composition profiles enabled us to evaluate their quality and 
bioactivity. Although 1,5-DAN enabled to detect more number of compounds compared to other matrices tested, 
there were still many non-detected compounds. Thus, we cannot exclude the involvement of such components 
in ORAC activity at present. The improvement of detectability of MALDI–MS is indispensable for successfully 
constructing more precise and accurate predictive system. The screening or development of new matrices to more 
effectively ionize various phytochemicals is required. We believe that basic information on the potential relation-
ship between the ionization efficacy and chemical structures of phytochemicals (Fig. 2A, Supplementary Fig. S2, 
and Supplementary Fig. S3) may be useful for the MALDI–MS-MP of phytochemical-containing crude samples 
and for the effective screening and development of matrices.

Previously, LC–MS and GC–MS have been the techniques most commonly used for the MP of medicinal 
herbs, agricultural products, and foods for quality evaluation. Previously, we showed for the first time the useful-
ness of LC–MS-MP for evaluating the apoptosis-inducing activity of GTEs and for screening anti-cancer com-
pounds or synergetic sensitizers20. In this study, we also performed conventional LC–MS-MP for the same GTE 
samples used in the main experiment (Supplementary Fig. S9 and Supplementary Table 5S). LC–MS detected 
a greater number of peaks (507) than did MALDI–MS (149), and MP based on the composition profiles from 
LC–MS successfully achieved various quality evaluations, such as distinguishing the similarity and dissimilarity 
among cultivars and picking seasons (Supplementary Fig. S9A), and the prediction of ORAC and polyphenol 
content (Supplementary Fig. S9B,C). Interestingly, however, MP based on the MALDI–MS datasets (Fig. 3B) 
showed a better performance than that based on LC–MS. As shown in Supplementary Fig. S10, LC–MS data was 
not able to construct appropriate OPLS models using datasets excluding components with higher VIP values (>1) 
(Supplementary Table S6). In contrast, MALDI–MS data was not greatly affected by the exclusion of such compo-
nents (Supplementary Tables S3 and S7) although its predictive performance was slightly lowered. These results 
suggest that MALDI–MS datasets include more number of peaks correlated with ORAC values or polyphenol 
contents compared to LC–MS datasets, and such peaks may coordinately contribute to the better performance 
of MALDI–MS datasets. The lowered performance of LC–MS datasets may be due to the low-correlative ability 
(predictability) of components with VIP values (<1) to ORAC values or polyphenol contents. These findings 
endorse the quality of the composition profiles obtained from MALDI–MS measurements and their applicability 
to the rapid and simple non-targeted MP of medicinal herbs, agricultural products, and foods.

Although it is known that the polyphenol content is correlated with ORAC15, 21, as shown in Fig. 3A and B, 
information on the metabolomic composition profile proved to be a better explanatory variable for ORAC than 
the total polyphenol content was. Similarly, the metabolomic composition was also found to be a better explan-
atory variable for the polyphenol content than ORAC was (Fig. 3A and C). These results suggest that a che-
mometrics approach based on OPLS regression analysis can provide an evaluation index that more accurately 
predicts bioactivity and its related properties. In contrast to indices corresponding to the “summed abundance” 
of multiple coexisting factors, such as total polyphenol content, their “relative abundance”, i.e. compositional 
balance, may serve as a functional unit for discriminating or predicting their bioactivity. The OPLS regres-
sion analysis identified the ORAC-contributing components based on their VIP values, but the correlation 
between the abundance of a single component and ORAC was relatively low even for the top-4 VIP compo-
nents (V01 + V02 + V03 + V04; Fig. 3E and Supplementary Table S3). In contrast, combinations of 4 compo-
nents (Intensity: V01 + V03 + V09 + V24, Relative: V01 + V03 + V09 + V23, Score: V03 + V08 + V09 + V23) 
carefully selected from the 40 components with VIP > 1 showed much improved abundance–ORAC correlation 
values (Fig. 4A). Among the top-25 VIP-valued components (VIP > 1) positively correlated with ORAC, the 
number of combinations of 2–4 components was 15,250, and the combinations of 4 components showed a bet-
ter correlative performance than those of 2 or 3 components (Supplementary Table S4). These results indicate 
that this combination-selecting procedure is an effective and straightforward methodology for more accurately 
evaluating the ORAC using a few chosen components. This finding suggests a promising strategy for efficiently 
selecting candidate combinations from multivariate data of multiple sample panels with diverse bioactivity, which 
is important but technically challenging in pharmaceutical, nutraceutical, and food functionality research, where 
single-sample panels are dominant. In conventional research on the evaluation of quality and bioactivity, the goal 
is usually to isolate a single component from crude mixtures and use its abundance as a basis for predicting the 
sample’s properties. In contrast, our study has shown that bioactivity can be predicted using multicomponent 
information, i.e. the abundance of a combination of components, the accuracy of which depends on the cho-
sen combination of components and the choice between three abundance measurements (Intensity, Relative, 
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or Score) (Fig. 4A and Supplementary Table S4). These efforts will contribute to an enhanced understanding of 
chemometrics procedure and an effective and simple means of data presentation using multicomponent informa-
tion, and such information may benefit the application of multivariate statistical methodology to the bioactivity 
evaluation of crude multicomponent systems.

Although the chart visualization is effective strategy to easily understand ORAC values using the selected 
component combination, this approach includes the possibility of causing the difference between chart appear-
ance and bioactivity. In the Relative data of the selected combination (V01 + V03 + V09 + V23) (Fig. 4C), the 
filled area of the SM1 chart was not observed in appearance, but it was clearly observed in the Intensity data of 
the combination (V01 + V03 + V09 + V24) (Supplementary Fig. S5B). Both V01 and V03 in the Intensity data 
were certainly present in SM1, indicating that these components contributed to the ORAC activity of SM1. In 
the Relative data, the maximum intensity is 100, and the minimum intensity is 1. The value of V01 intensity was 
converted into 1 as the Relative value. This minimum value was also applied in V09 and V23. Because V01, V09, 
or V23 was very small value, the area appearance became close to zero in a diamond-like radar chart, even though 
V03 was present as the value of 5.50. This is one of the causes of the difference between the chart appearance and 
ORAC activity. Except for such 4 components, 36 other components with the highest VIP values (>1) contribute 
to the ORAC activity. Thus, radar chart, using more than 5 components, may resolve such an issue, and will lead 
to the construction of much better model effectively improving the difference between chart appearance and 
bioactivity.

Previously, we have reported the performance of basic MALDI–MS procedures, including the repeatabil-
ity, sensitivity, and linearity of detection of low-molecular-weight metabolites6–8, 22. Here we attempted to apply 
this established technique to crude herbal extracts. The appropriate linearity was obtained for the represent-
ative GTE components (EGCG, EGC, ECG, and EC) at the standard level (Supplementary Fig. S11A). These 
compounds were detected in a dilution series of the representative GTE (YB1) (Supplementary Fig. S11B). A 
10-fold dilution of the GTE stock solution was used in all experiments under the condition ensuring the lin-
earity of four compounds. MS data of the representative GTE (YB1) sample were acquired on a different day 
(Supplementary Fig. S11C), and there were no significant changes in relative spectral patterns. We were also able 
to stably construct preferable OPLS models using such MS data (Supplementary Fig. S11D). These results ensure 
the robustness of our proposed MALDI–MS-MP system. The present technique is effective for performing the 
high-throughput first screening of bioactive compounds and combinations from crude herbal samples at the ini-
tial step of research. However, this MS technique is still in vitro cell-free system, and further its technical validity 
would be reinforced through some sort of comparison with in vitro cellular systems and/or in vivo systems. In 
our research groups, some MALDI–MS-MP researches, using other bioactivities and medicinal herbal extracts, 
bacterial samples, and animal/human body fluids, are in progress. These attempts may also contribute to the eval-
uation of technical validity and further improvement of our proposed MS technique.

In summary, we have established an effective strategy for evaluating a measure of the bioactivity, 
namely the antioxidant activity, of diverse GTE panels by non-targeted MP-based chemometric analy-
sis using a high-throughput analytical system, MALDI–MS. This approach also enabled us to easily extract a 
bioactivity-predictive chemical combination from multicomponent information. Our proposed MALDI–MS 
procedures (sample preparation, matrix selection, peak detection and alignment, and multivariate statistical anal-
ysis) contribute to the construction of standardization of crude herbal extracts for successfully performing MP 
and the screening of chemical combination. These results allowed us to overcome the drawbacks of the conven-
tional MP technique (Supplementary Fig. S8), and may enable a rapid and simple high-throughput MP of crude 
samples for the evaluation of their bioactivity (Supplementary Fig. S12) as well as various applications, including 
the quality assessment, breeding, screening, and monitoring of low-molecular-weight chemicals. In addition, 
further chemometric research will open new avenues for investigating the potential relationship between the 
bioactivity of crude extracts and their multiple coexisting factors, and for determining effective chemical com-
binations for bioactivity prediction. This may contribute to the discovery of new scientific data helpful for the 
development of multicomponent botanical drugs and dietary supplements, herbal medicines, functional foods, 
and combinations of foods/beverages optimized to promote health and reduce the risk of disease.

Methods
Chemicals. All chemicals used were of analytical reagent grade. Matrix chemicals and solvents were pur-
chased from Wako Pure Chemical Industries, Ltd (Osaka, Japan), Tokyo Chemical Industry Co., Ltd (Tokyo, 
Japan), or Sigma-Aldrich (St Louis, MO, USA) if not stated otherwise. All catechins were purchased from Nagara 
Science Co., Ltd (Gifu, Japan). Folin–Ciocalteu reagent, sodium carbonate, and 9-aminoacridine (9-AA) were 
obtained from Merck (Darmstadt, Germany). 9-AA was recrystallized prior to use.

Preparation of GTEs. We prepared 21 distinct hot-water extracts from the leaves (Table 1) of 7 Japanese 
green tea cultivars (Camellia sinensis L. and C. sinensis x C. taliensis), which were cropped during 3 different pick-
ing seasons (7 April–7 May, 28 May–11 June, and 4–17 July). Six cultivars (Camellia sinensis L.) were purchased 
from retail tea stores, and one cultivar (C. sinensis x C. taliensis), Sunrouge (SR), was kindly donated by Nippon 
Paper Industries Co., Ltd (Tokyo, Japan). A fine powder of the dried leaf (30 mg) from each cultivar was added 
to 1.5 mL boiling water for 10 min. The extract was centrifuged at 15,000 × g for 10 min, and the supernatant was 
subjected to further analyses.

MALDI–MS analysis. Individual phytochemical standard compounds were dissolved in water or MeOH, 
diluted to give graded concentrations (100 ppm), and mixed with a matrix (9-AA, 1,5-DAN, Nor-Ho, or 
harmine)/100% MeOH or acetone solution (10 mg/mL) at a ratio of 1:1 (v/v). The sample (0.5 μL) was spotted 
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onto the ground-steel MALDI plate and air-dried. Four spots were deposited from each individual sample and 
their data averaged for the subsequent data analyses. A MALDI-TOF-MS (AXIMA Performance, Shimadzu, 
Japan) was used for all the analyses. Each mass spectrum was acquired with 5 laser shots. For each sample spot, 
121 spectra were mean-centered. All spectrometric data were processed and analysed using the Shimadzu Biotech 
Launchpad software. The ionization of each phytochemical was confirmed by a deprotonated ion peak [M–H]−. 
In the GTE experiments, GTE samples (1/10 dilution in water) were subjected to MALDI–MS analysis using 
1,5-DAN or 9-AA as the matrix under the same spotting and measuring conditions as for the phytochemicals. 
Then, peak picking and alignment, noise reduction, and deisotoping of the obtained spectral data were performed 
using an in-house script (Supplementary Fig. 1S), and the resultant data were subjected to multivariate statistical 
analysis. Phytochemical peaks were assigned by MS/MS analysis or by searching for their precise masses using 
the MassBank metabolite databases.

Multivariate statistical analysis. The datasets of the 21 GTEs were subjected to multivariate statistical 
analysis to identify similarity/dissimilarity among the samples (149 (1,5-DAN) or 18 (9-AA) distinct m/z peaks). 
We conducted an unsupervised multivariate principle component analysis (PCA) and a supervised multivariate 
OPLS analysis using SIMCA-P+ ver.12 (Umetrics, Umea, Sweden). PCA models are depicted as score plots and 
consist of two synthetic variables: principal component (PC) 1 (accounting for the greatest proportion of the total 
variance) and PC2 (accounting for the second greatest proportion of the total variance orthogonal to PC1). These 
plots display intrinsic groups of samples based on their spectral variations. This analysis attempts to explain the 
original features of the samples as far as possible based on a ratio of the sum of the percentages of PC1 and PC2.

OPLS regression analysis, which can be described as the regression extension of PCA, was chosen to create 
the bioactivity-prediction model using SIMCA-P+. OPLS derives latent variables that maximize the covariation 
between the measured metabolite data and the response variable (ORAC). This differs from PCA, which utilizes 
the maximum variation in the metabolite data matrix. The quality of the OPLS model was evaluated by the 
goodness-of-fit parameter R2 and the predictive capacity parameter Q2, with values higher than 0.5 indicating 
good quality.

A heatmap was generated using the statistical package Multi-Experiment Viewer (MeV v4.9) (http://www.
tm4.org/mev/). This summarises the Z-scores of the peaks of the 72 phytochemicals, showing differences in ion-
isability among the matrices.

ORAC assay. The ORAC assays of GTE samples (1/1000 dilution in phosphate buffer) were performed as 
detailed by Ou et al.14 using an automated Microplate Reader SH-9000 (Corona Electric Co., Ltd, Hitachinaka, 
Japan). Analyses were conducted in pH 7.0 phosphate buffer at 37 °C. Peroxyl radicals were generated using 
2,2′-azobis(2-amidinopropane) dihydrochloride, and fluorescein was used as the substrate. The fluorescence 
conditions were as follows: excitation, 485 nm; emission, 520 nm. Analyses were conducted in duplicate (n = 6). 
ORAC values were calculated as Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) equivalents 
(TE).

Total polyphenol assay. The total soluble polyphenols in the GTEs (1/100 dilution in water) were deter-
mined with Folin–Ciocalteu reagent according to the method of Slinkard and Singleton23 using gallic acid as a 
standard. Analyses were conducted in duplicates (n = 3). Results were expressed as gallic acid equivalents (GAE).
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