389 research outputs found

    Subsonic aerodynamic characteristics of a proposed advanced manned launch system orbiter configuration

    Get PDF
    The Advanced Manned Launch System is a proposed near-term technology, two-stage, fully reusable launch system that consists of an unmanned glide-back booster and a manned orbiter. An orbiter model that featured a large fuselage and an aft delta wing with tip fins was tested in the Langley 7- by 10-Foot High-Speed Tunnel. A crew cabin, large payload fairing, and crew access tunnel were mounted on the upper body. The results of the investigation indicated that the configuration was longitudinally stable to an angle of attack of about 6 deg about a center-of-gravity position of 0.7 body length. The model had an untrimmed lift-drag ratio of 6.6, but could not be trimmed at positive lift. The orbiter model was also directionally unstable. The payload fairing was responsible for about half the instability. The tip-fin controllers, which are designed as active controls to produce artificial directional stability, were effective in producing yawing moment, but sizable adverse rolling moment occurred at angles of attack above 6 deg. Differential deflection of the elevon surfaces was effective in producing rolling moment with only small values of adverse yawing moment

    Supersonic aerodynamic characteristics of a proposed Assured Crew Return Capability (ACRC) lifting-body configuration

    Get PDF
    An investigation was conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers from 1.6 to 4.5. The model had a low-aspect-ratio body with a flat undersurface. A center fin and two outboard fins were mounted on the aft portion of the upper body. The outboard fins were rolled outboard 40 deg from the vertical. Elevon surfaces made up the trailing edges of the outboard fins, and body flaps were located on the upper and lower aft fuselage. The center fin pivoted about its midchord for yaw control. The model was longitudinally stable about the design center-of-gravity position at 54 percent of the body length. The configuration with undeflected longitudinal controls trimmed near 0 deg angle of attack at Mach numbers from 1.6 to 3.0 where lift and lift-drag ratio were negative. Longitudinal trim was near the maximum lift-drag ratio (1.4) at Mach 4.5. The model was directionally stable over Mach number range except at angles of attack around 4 deg at M = 2.5. Pitch control deflection of more than -10 deg with either elevons or body flaps is needed to trim the model to angles of attack at which lift becomes positive. With increased control deflection, the lifting-body configuration should perform the assured crew return mission through the supersonic speed range

    Low-Subsonic-Speed Static Longitudinal Stability and Control Characteristics of a Winged Reentry-Vehicle Configuration Having Wingtip Panels that Fold up for High-Drag Reentry

    Get PDF
    An investigation of the low-subsonic-speed static longitudinal stability and control characteristics of a model of a manned reentry-vehicle configuration capable of high-drag reentry and glide landing has been a made in the Langley free-flight tunnel. The model had a modified 63 deg delta plan-form wing with a fuselage on the upper surface. This configuration had wingtip panels designed to fold up 90 deg for the high-drag reentry phase of the flight and to extend horizontally for the glide landing. Data for the basic configurations and modifications to determine the effects of plan form, wingtip panel incidence, dihedral, and vertical position of the wingtip panels are presented without analysis

    Subsonic aerodynamic characteristics of the HL-20 lifting-body configuration

    Get PDF
    The HL-20 is proposed as a possible future manned spacecraft. The configuration consists of a low-aspect-ratio body with a flat undersurface. Three fins (a small centerline fin and two outboard (tip) fins set at a dihedral angle of 50 deg) are mounted on the aft body. The control system consists of elevon surfaces on the outboard fins, a set of four body flaps on the upper and lower aft body, and an all-movable center fin. Both the elevons and body flaps were capable of trimming the model to angles of attack from -2 deg to above 20 deg. The maximum trimmed lift-drag ratio was 3.6. Replacing the flat-plate tip fins with airfoil tip fins increased the maximum trimmed lift-drag ratio to 4.2. The elevons were effective as a roll control, but they produced about as much yawing moment as rolling moment because of the tip-fin dihedral angle. The body flaps produced less rolling moment than the elevons and only small values of yawing moment. A limited investigation of the effect of varying tip-fin dihedral angle indicated that a dihedral angle of 50 deg was a reasonable compromise for longitudinal and lateral stability, longitudinal trim, and performance at subsonic speeds

    Supersonic aerodynamic characteristics of a circular body Earth-to-Orbit vehicle

    Get PDF
    The circular body configuration is a generic single- or multi-stage reusable Earth-to-orbit transport. A thick clipped-delta wing is the major lifting surface. For directional control, three different vertical fin arrangements were investigated: a conventional aft-mounted center fin, wingtip fins, and a nose-mounted fin. The tests were conducted in the Langley Unitary Plan Wind Tunnel. The configuration is longitudinally stable about the estimated center of gravity of 0.72 body length up to a Mach number of about 3.0. Above Mach 3.0, the model is longitudinally unstable at low angles of attack but has a stable secondary trim point at angles of attack above 30 deg. The model has sufficient pitch control authority with elevator and body flap to produce stable trim over the test range. The model with the center fin is directionally stable at low angles of attack up to a Mach number of 3.90. The rudder-like surfaces on the tip fins and the all-movable nose fin are designed as active controls to produce artificial directional stability and are effective in producing yawing moment. The wing trailing-edge aileron surfaces are effective in producing rolling moment, but they also produce large adverse yawing moment

    Subsonic Aerodynamic Characteristics of a Circular Body Earth-to-Orbit Vehicle

    Get PDF
    A test of a generic reusable earth-to-orbit transport was conducted in the 7- by 10-Foot high-speed tunnel at the Langley Research Center at Mach number 0.3. The model had a body with a circular cross section and a thick clipped delta wing as the major lifting surface. For directional control, three different vertical fin arrangements were investigated: a conventional aft-mounted center vertical fin, wingtip fins, and a nose-mounted vertical fin. The configuration was longitudinally stable about the estimated center-of-gravity position of 0.72 body length and had sufficient pitch-control authority for stable trim over a wide range of angle of attack, regardless of fin arrangement. The maximum trimmed lift/drag ratio for the aft center-fin configuration was less than 5, whereas the other configurations had values of above 6. The aft center-fin configuration was directionally stable for all angles of attack tested. The wingtip and nose fins were not intended to produce directional stability but to be active controllers for artificial stabilization. Small rolling-moment values resulted from yaw control of the nose fin. Large adverse rolling-moment increments resulted from tip-fin controller deflection above 13 deg angle of attack. Flow visualization indicated that the adverse rolling-moment increments were probably caused by the influence of the deflected tip-fin controller on wing flow separation

    Distance Measures for Reduced Ordering Based Vector Filters

    Full text link
    Reduced ordering based vector filters have proved successful in removing long-tailed noise from color images while preserving edges and fine image details. These filters commonly utilize variants of the Minkowski distance to order the color vectors with the aim of distinguishing between noisy and noise-free vectors. In this paper, we review various alternative distance measures and evaluate their performance on a large and diverse set of images using several effectiveness and efficiency criteria. The results demonstrate that there are in fact strong alternatives to the popular Minkowski metrics

    Tactile thresholds are preserved yet complex sensory function is impaired over the lumbar spine of chronic non-specific low back pain patients. A preliminary investigation

    Get PDF
    Objectives: To investigate impairments in sensory function in chronic non-specific low back pain patients and the relationship between any impairment and the clinical features of the condition. Design: A cross-sectional case-control study. Setting: Laboratory based study. Participants: Nineteen chronic non-specific low back pain patients and nineteen healthy controls. Main Outcome measures: Tactile threshold, two point discrimination distance and accuracy at a task involving recognizing letters drawn over the skin of the lower back (graphaesthesia) were assessed over the lumbar spine in both groups. Pain duration, pain intensity, physical function, anxiety and depression were assessed by questionnaire in the back pain group Results: We found no difference in tactile threshold between the two groups (median difference 0.00 95% CI -0.04 – 0.04). There was a significant difference between controls and back pain patients for two point discrimination (mean difference 17.85 95% CI 5.93 – 29.77) and graphaesthesia accuracy (mean difference 6.13 95% CI 1.27-10.99). Low back pain patients had a larger lumbar two point discrimination distance threshold and a greater letter recognition error rate. In the patient group, we found no relationship between clinical profile and sensory function and no relationship between the sensory tests. Conclusions: These data support existing findings of perceptual abnormalities in chronic non-specific low back pain patients and are suggestive of cortical rather than peripheral sensory dysfunction. Amelioration of these abnormalities may present a target for therapeutic intervention

    Associations between smoking and caffeine consumption in two European cohorts

    Get PDF
    AIMS: To estimate associations between smoking initiation, smoking persistence and smoking heaviness and caffeine consumption in two population‐based samples from the Netherlands and the United Kingdom. DESIGN: Observational study employing data on self‐reported smoking behaviour and caffeine consumption. SETTING: Adults from the general population in the Netherlands and the United Kingdom. PARTICIPANTS: Participants from the Netherlands Twin Register [NTR: n = 21 939, mean age 40.8, standard deviation (SD) = 16.9, 62.6% female] and the Avon Longitudinal Study of Parents and Children (ALSPAC: n = 9086, mean age 33.2, SD = 4.7, 100% female). MEASUREMENTS: Smoking initiation (ever versus never smoking), smoking persistence (current versus former smoking), smoking heaviness (number of cigarettes smoked) and caffeine consumption in mg per day through coffee, tea, cola and energy drinks. FINDINGS: After correction for age, gender (NTR), education and social class (ALSPAC), smoking initiation was associated with consuming on average 52.8 [95% confidence interval (CI) = 45.6–60.0; NTR] and 59.5 (95% CI = 51.8–67.2; ALSPAC) mg more caffeine per day. Smoking persistence was also associated with consuming more caffeine [+57.9 (95% CI = 45.2–70.5) and +83.2 (95% CI = 70.2–96.3) mg, respectively]. Each additional cigarette smoked per day was associated with 3.7 (95% CI = 1.9–5.5; NTR) and 8.4 (95% CI = 6.9–10.0; ALSPAC) mg higher daily caffeine consumption in current smokers. Smoking was associated positively with coffee consumption and less strongly with cola and energy drinks. For tea, associations were positive in ALSPAC and negative in NTR. CONCLUSIONS: There appears to be a positive association between smoking and caffeine consumption in the Netherlands and the United Kingdom
    corecore