Low-Subsonic-Speed Static Longitudinal Stability and Control Characteristics of a Winged Reentry-Vehicle Configuration Having Wingtip Panels that Fold up for High-Drag Reentry

Abstract

An investigation of the low-subsonic-speed static longitudinal stability and control characteristics of a model of a manned reentry-vehicle configuration capable of high-drag reentry and glide landing has been a made in the Langley free-flight tunnel. The model had a modified 63 deg delta plan-form wing with a fuselage on the upper surface. This configuration had wingtip panels designed to fold up 90 deg for the high-drag reentry phase of the flight and to extend horizontally for the glide landing. Data for the basic configurations and modifications to determine the effects of plan form, wingtip panel incidence, dihedral, and vertical position of the wingtip panels are presented without analysis

    Similar works