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Summary

A wind-tunnel investigation was conducted to de-

termine the supersonic aerodynamic characteristics

of a lifting-body configuration considered as a possi-

ble return vehicle from the Space Station Freedom.

The model was longitudinally stable about the

design center-of-gravity position at 54 percent of the
body length. The configuration with undeflected

longitudinal controls trimmed near 0 ° angle of attack
at Mach numbers from 1.6 to 3.0 where lift and

lift-drag ratio were negative. Longitudinal trim was

near the maximum lift-drag ratio (1.4) at Mach 4.5.

The model was directionally stable over the angle-

of-attack range except for angles up to as much
as 8° at Mach 2.5 to 4.5. At these angles, the

value was zero or slightly negative. Pitch-control
deflection of more than -10 ° with either elevons or

body flaps or combined control deflections is needed

to trim the model to angles of attack at which lift

becomes positive. With increased control deflection,

the lifting-body configuration should perform the
assured crew return mission through the supersonic

speed range.

Introduction

The National Aeronautics and Space Administra-

tion (NASA) is considering the requirement of having
one or more crew return vehicles docked at the Space

Station Freedom. These vehicles will be a safeguard

to assure crew return capability. The detailed mis-

sion requirements of such a vehicle have not been

finalized, but configurations of varying capabilities

are under study (ref. 1). The candidate configura-
tions are sized to fit in the 15- by 60-ft cargo bay

of the Space Shuttle for transportation to the Space
Station. (Independent launch to the Space Station,

however, has not been ruled out.) One of the con-

cepts under study is a lifting body designed to pro-

duce moderate lift-drag values over the speed range.

Moderate lift-drag values give a degree of cross-range

performance and offer the option of a conventional

landing.
A series of wind-tunnel investigations have been

undertaken to define the aerodynamic characteris-

tics of this lifting-body configuration across the speed

range from low-subsonic to hypersonic speeds. The

high-subsonic and transonic aerodynamic character-
istics have been determined and are presented in ref-

erence 2. The supersonic aerodynamic characteristics

are presented herein. Tests at hypersonic speeds are

planned.
The present test was conducted in the Langley

Unitary Plan Wind Tunnel using a 0.07-scale model

of a proposed 24.6-ft-long vehicle over a Mach num-

ber range from 1.6 to 4.5 at a test Reynolds number of

3.4 x 106 based on body length. (The estimated

flight Reynolds number varies from 27 x 106 at a
Mach number of 1.6 to 7 × 106 at a Mach imnl-

ber of 4.5.) The model was tested over a nonfinal

angle-of-attack range of -2 ° to 30 ° and an angle-of-

sideslip range of -6 ° to 6 ° . Control effectiveness of

elevons, body flaps, and all all-moveable vertical fin
was studied.

Symbols

The longitudinal data are referred to the stability-

axis system, and the lateral-directional data are re-
ferred to the body-axis system (fig. 1). All coeffi-

cients are based on the dimensions of the basic body

without tip fins. The data are normalized by the

planform area, length, and span of ttle body. The
moment reference center was located at the vehicle

center of gravity, which was 54 percent of tim body

length from the nose.
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Ct
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Cl_

Cm

Cn

Cn _?

Cn6a

Cnbr

Cy

Cy_

Cy6,_

Cy_

FS

body span, in.

drag coefficient, Drag/qSre f

lift coefficient, Lift/qSre f

rolling-moment coefficient,

Rolling moment /qbSre f

= ACI/A[3, taken at

/3 = =t=2°, per degree

= ACt/A6a, per degree

= ACI/A6r, per degree

pitching-moment coefficient,

Pitching monlent /qlSre f

yawing-moment coefficient,

Yawing molnent / qbSref

= ACn/A/3, taken at/3 = +2 °, per

degree

= ACn/A6a, per degree

= ACn/A6r, per degree

pressure coefficient,

(Plocal -- Pfree stream)/q

side-force coefficient,

Side force/qSref

= ACy/A_, taken at
/3 -- 4-2 °, per degree

= ACy/A6a, per degree

= ACy/A6r, per degree
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L/D

l

M

P

Sref

X

Y

Z

5a

5BF

_e

_r

lift-drag ratio

body length, in.

Mach number

pressure, lb/in 2

free-stream dynamic pressure,

lb/in 2

basic body planform area (excluding

tip fins), in 2

longitudinal body axis

lateral body axis

vertical body axis

angle of attack, deg

angle of sideslip, deg

aileron (differential pitch) control
deflection angle, differential control

deflection angle, (_e,L -- _e,R) /2 or

(SBF,L -- 5BF,R)/2, deg

body-flap deflection angle (positive

when deflected downward), deg

elevon deflection angle (positive

when deflected downward), deg

vertical-fin deflection angle (positive

when deflected with trailing edge to
left), deg

Subscripts:

L left

max maximum value

R right

trim trimmed condition (zero moment)

Description of Model

Sketches of the model are presented in figure 2 and

a photograph is presented in figure 3. Model dimen-
sional information is given in table I. The aluminum

model was a 0.07-scale representation of a proposed
24.6-ft-long vehicle. The configuration consisted of

a low-aspect-ratio body with a flat undersurface and

a blunt base. Three fins were mounted on the up-
per aft portion of the model. The centerline fin was

relatively small, and the larger outboard (tip) fins
were rolled outward 40 ° from vertical. The fins had a

thick flat-plate cross section with a cylindrical lead-

ing edge and blunt trailing edge. Control surfaces,

referred to as elevons, made up the trailing edges of

the outboard fins. The entire center fin was pivoted
about the midpoint of the root chord to act as a

yaw control device. In addition, the model had four

body-flap control surfaces, two on the upper body
and two on the lower body. Their surfaces were flush

with the body contour and could only be deflected

outward. For the current test, only the upper-body
flaps were deflected. The maximum control deflec-

tion angle available for the test model was -10 °.

Apparatus, Tests, and Corrections

Tests were conducted in the Langley Unitary Plan

Wind Tunnel. The tunnel is a supersonic closed

circuit design with two test legs. The flow in the low-

speed leg can be varied from a Mach number of 1.5

to 2.86. The high-speed leg produces Mach numbers

from 2.36 to 4.63. Additional information concerning
the facility may be found in reference 3. The current

investigation was conducted in the low-speed leg at

Mach numbers of 1.6, 2.0, and 2.5 and in the high-
speed leg at Mach numbers of 3.0, 3.5, 4.0, and 4.5.

All tests were made at a constant Reynolds number of

2.0 × 106 per foot (3.4 × 106 based on body length).

The model was sting mounted through its base, and

forces and moments were measured with an internally

mounted strain-gage balance.

Model angles of attack and sideslip were corrected
for the sting and balance deflection under load. Cus-

tomary tunnel interference corrections were applied
to the data. In an attempt to ensure turbulent flow

over the model, transition grit was applied in accor-

dance with reference 4 and as shown in figure 4. Two

gritting techniques were used. In the low-speed leg,

No. 50 sand grains were thinly sprinkled in 1/16-in.
bands 1.2 in. aft of the nose and 0.3 in. measured

perpendicular to the leading edges of the fins. Also,
1/16-in. bands of grit were added around the lower

body radius. The grit was located in the same po-

sitions for tests in the high-speed leg. In this case,

however, individual grains of No. 35 grit were applied

at a regular spacing of 4 grain diameters.

The model pitch range was limited to maximum

positive angles of attack of about 18 ° at M -- 1.6
and in some cases at M = 2.0 because of model

unsteadiness at the higher angles. At M = 2.5 and

above, full angle-of-attack sweeps up to 30 ° were
made. Angles of sideslip ranged from -6 ° to 6° at

fixed angles of attack. Data were taken as the model

was moved from negative to positive angles over the

angle-of-attack and angle-of-sideslip ranges. Model
sting-cavity pressure was measured as an indication

of model base pressure. These data are presented in
figure 5 for use if base corrections are desired.



Results and Discussion

Longitudinal Characteristics

Effects of Mach number. The variations of

the longitudinal aerodynamic characteristics of the
model with Mach number are shown in figure 6.

These data show the typical reduction in lift, lift-

curve slope, lift-drag ratio, and stability with increas-

ing supersonic Mach number. The untrimmed max-

inmm lift-drag value dropped slightly, from 1.8 at
M = 1.6 to 1.5 at M = 4.5. The model was statically

stable across the speed range at trimmed conditions.

Effects of fins. The effects of fins on the longi-
tudinal aerodynamic characteristics of the model are

shown in figure 7. Data are presented for the com-

plete model, for the model with the center fin off, and
for the model with all fins off.

The presence of the center fin had almost no effect

on the longitudinal characteristics of the model at
the test Mach numbers. The outboard fins, however,

contributed a positive increment to lift, drag, and

stability level. The body alone, with undeflected

controls, was neutrally stable or unstable with no

longitudinal trim point at Mach numbers from 1.6
to 3.0. As Mach number increased above 2.5, body-

alone pitching moment became more nonlinear and

became stable at high angles of attack. As a result,

the body developed a stable trim point at high angles
of attack at Mach numbers above 3.0. Also, the

effect of outboard fins on performance decreased with

increasing Mach number; at M > 2.5, L/D values
were the same with or without fins.

With fins in place, the configuration was longi-

tudinally stable, although the level of stability de-

creased with increasing Mach number. At Mach
numbers up to 3.0, the model trimmed at angles of

attack of about 0 ° where lift and L/D were negative.

Above M = 2.5, the model trimmed at positive an-

gles of attack and had positive lift and L/D values.

At M = 4.5, trim occurred near (L/D)max.

Pitch control. Two sets of moveable surfaces were

tested as pitch controls; elevons made up the trail-

ing edge of the outboard fins and body flaps were lo-
cated on the upper and lower aft portion of the body.
Because the model with controls undeflected showed

longitudinal trim near a = 0 ° at the lower Mach

numbers, only negative control deflections, which in-

crease trim angle of attack, were investigated. Tests
were conducted either with elevons deflected or body

flaps deflected. No tests were conducted with both
sets deflected together. Pitch-control data are pre-

sented in figure 8.

The effectiveness of the body flaps in producing

trimming moments was about equal to that of the

elevons at M = 1.6. At the higher Mach numbers,

however, the body flap was less effective than the

elevons. The change in trim angle of attack resulting
from this control deflection was 2° or less. The high

level of longitudinal stability of the configuration was

partially responsible for this low effectiveness. An
additional trimming-moment increment should be

available with control deflections greater than -10 °

or elevons and body flap deflected simultaneously.

Lift-drag ratio was reduced only slightly by control

deflection at Mach 1.6. At the higher Mach numbers,

there was no change in L/D with control deflection.

Trim characteristics. Longitudinal trim values

of angle of attack, lift coefficient, and lift-drag ratio
with controls undeflected are plotted as a function of

Mach number in figure 9. Included in this plot are
the trim values from reference 2; these values covered

the range from M = 0.6 to 1.2.

Among the favorable attributes of the present

lifting-body configuration at subsonic and transonic:
Mach numbers were the trim characteristics with

controls undeflected. The data of reference 2 show

the model trimming at moderate angles of attack
around M = 1.0, where buffet may be a problem,

and near L/Dmax = 3.1 at subsonic (landing) speeds.

At the low-supersonic Mach numbers of this investi-

gation (M = 1.6 to 2.5), pitch control is required, be-
cause trim with controls neutral occurs near (_ = 0 °

with the previously mentioned negative lift and LID

values. Therefore, to obtain suitable fight trim char-

acteristics at these supersonic speeds, negative pitch

control deflections are required. At Mach numbers

of 4.0 and 4.5, trim occurs at positive lift and near

L / Dmax.

Lateral Characteristics

Basic lateral characteristics. The lateral coef-

ficients Cy, Cn, and CI plotted over an angle-of-

sideslip range of -6 ° to 6 ° for the complete model

are presented in figure 10. The data were taken at

constant angles of attack of 0 °, 5 °, 10 °, and 15 ° at
Mach numbers from 1.6, 2.0, and 2.5; at angles of

attack of 5 °, 10 °, 15 °, and 20 ° at Mach numbers of

3.0 and 3.5; and at angles of attack of 10 °, 15°, 20 °,

and 25 ° at Mach numbers of 4.0 and 4.5. In geimral,
the lateral data are linear over the test sideslip range

between 4° and -4 ° . Therefore, the lateral stability

derivatives presented in figure 11, obtained from tests

at constant sideslip angles of +2 ° over the complete

angle-of-attack range, should be valid.

Lateral stability characteristics. The lateral

stability derivatives for the model with various fin

arrangements are presented in figure 11. The
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body-aloneconfigurationwas,asexpected,direction-
ally unstable(negativevaluesof Cnl_ ) over the test

%

Mach number and angle-of-attack ranges. The out-

board fins added a large stabilizing moment over

the Mach number range. The small center fin con-

tributed a surprisingly large increment of positive

stability at the lower angles of attack at M = 1.6

to 3.5. With center and outboard fins, the model was

directionally stable over the angle-of-attack range,

except for angles up to as much as 8° at M = 2.5

to 4.5. At these angles, Cn_ was zero or slightly
negative. Overall, the stability level decreased at

low angles of attack with increasing Mach number

and remained relatively unchanged at the higher an-

gles. The model with outboard fins only was unstable
above M = 2.0 at angles of attack up to as much as

12 °. The model had positive effective dihedral -Clz
over most of the test range with or without fins.

Roll control. Roll control was accomplished

by differentially deflecting the elevons on the out-
board fins or deflecting the body flaps on the up-

per aft portion of the body. Since the longitudinal

data suggested a need to trim the configuration to

more positive angles of attack (at least at the low-

supersonic Mach numbers), only negative control de-
flections were tested. The effectiveness values were

obtained with the left upper elevon or left body flap

set at -10 ° while the right control remained at 0°.

These deflections represent -5 ° aileron deflection for

an elevon setting of -5 °. Roll-control effectiveness

per degree of deflection Cl_ a is shown in figure 12.
Both sets of controls produced rolling moments. The

elevons, with their larger transverse-moment arm,
were much more effective than the body flaps. The
effectiveness of both sets of controls was small and

decreased with increasing Mach number. The effec-

tiveness of the body flaps became zero at M -- 3.0.

Simultaneous deflection of elevons and body flaps was
not tested, and whether their effectiveness values are

directly additive is unknown.
Differential deflection of the elevons as a roll

control produced as much adverse yawing moment

-Cn_, as rolling moment because of the rolled-out fin
configuration. Differential deflection of the elevons

acted as much like a rudder as ailerons. The yaw-

ing moment associated with body-flap deflection, on

the ottmr hand, was near zero (at Mach numbers for
which the body flap had any effectiveness). There-

fore, if the elevons are used for roll control, a control
device such as a rudder will be needed to offset the

yawing moments produced.

Yaw control. Yaw control was accomplished by

pivoting the small center fin about its midchord.

Yaw-effectiveness data are given in figure 13. These
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data were derived by taking the difference between

data taken at fin deflection angles of 0° and 5°. The

effectiveness value per degree of deflection Cn_r was
essentially constant over the angle-of-attack range at
each Mach number. Unlike differential elevon deflec-

tion, the center fin produced almost no cross-coupled

moment, that is, no rolling moment. The effective-

ness of the center fin as a yaw control, however, was
low at these test Mach numbers.

Concluding Remarks

A wind-tunnel investigation has been made to de-

termine the supersonic aerodynamic characteristics

of a lifting-body configuration considered as a possi-
ble return vehicle from the Space Station Freedom.

Results of the investigation indicated that the

model was longitudinally stable about the center-of-

gravity position of 54 percent of the body length.
With pitch controls undeflected, the model was

trimmed at negative angles of attack at Mach num-

bers from 1.6 up to about 3.0. At these conditions,

lift values were negative. Pitch-control deflections of
-10 °, the maximum deflection available on the test

model, of either elevons or body flaps increased the

trim angle only about 2°. At Mach numbers up to

3.0, trimmed values of lift and lift-drag ratio (L/D)
were still negative; these values indicated the need

for additional control input to obtain positive values.

Above a Mach number of 3.0 with controls neutral,

the longitudinal trim angle increased, and the config-

uration was trimmed near maximum L/D at a value

of about 1.4 at M = 4.5. The directional stability

level at longitudinal trim conditions (controls zero)

decreased with increasing speed and became zero at
Mach numbers from 2.5 to 3.0 before regaining sta-

bility at the higher speeds.

The supersonic aerodynamic data indicate that

longitudinal control deflections in excess of -10 ° or

combined elevon and body-flap deflection are needed
to trim and control the vehicle. With increased con-

trol deflection, the lifting-body configuration should

perform the assured crew return missions through

the supersonic speed range with positive longitudi-

nal and lateral stability and positive lift.

NASA Langley Research Center
Hampton, VA 23665-5225
September 8, 1989
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Table I. Geometric Characteristics of Model

Body alone:

Aspect ratio ............................... 0.6

Length (reference length), in ....................... 20.6

Span (reference span), in .......................... 9.7

Planform area (reference area), in 2 .................... 152.2

Base area (excluding cavity area), in 2 ................... 23.2

Cavity area, in 2 ............................. 4.9

Height (maximum), in ........................... 4.7

Body with fins:

Aspect ratio ............................... 1.5

Length, in ............................... 20.6

Span (outboard fins tip to tip), in ..................... 16.3

Planform area, in 2 ........................... 178.6

Base area (no cavity and fin base area), in 2 ................ 23.2

Cavity area, in 2 ............................. 4.9

Height (to tip of outboard fin), in ...................... 5.9

Elevons:

Chord, in ................................. 1.1

Span, in ................................. 4.1

Thickness, in ............................... 0.4

Area (each), in 2 ............................. 3.5

Body flaps:

Chord, in ................................. 1.5

Span, in ................................. 2.8

Area (each), in 2 ............................. 4.2
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Wind direction
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Z

Figure 1. Sketch of system of axes used in investigation showing positive direction of forces, moments, velocities,
and angles.

7



Elevon _

©
1

5.94

20.63 _
r I

FS 0 FS 2O.63

T
9.70

J

(a) General arrangement.
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FS 9.2 FS 12.4 FS 15.5

FS 18.6 FS 20.6

(b) Body cross sections.

Figure 2. Sketches of model used in investigation. All dimensions are in inches.
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Figure 3. Modelmounted in Langley Unitary Plan WindTunnel.

,2,_/-- 0.3 in. measured perpendicular to leading edge

on both sides of each fin

_-_ 0.3 in. inboard of chine on upper

and lower surfaces

Test section Mach number

1 1.6 to 2.5

2 3.0 to 4.5

Grit number

5O

35

Grit Band width,
diameter, in. in.

0.013 0.O62

0.022 0.022

Spacing,
in.

Sprinkled

0.09

Figure 4. Sketch showing transition grit locations on model.
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Figure 5. Model base pressures measured in investigation.
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Figure 5. Concluded.
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(a) CL and CD versus a.

Figure 6. Effects of Mach number on longitudinal aerodynamic characteristics of model.
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(a) Concluded.

Figure 6. Continued.
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Figure 6. Continued.
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Figure 6. Concluded.
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(a) C L and C D versus a at M = 1.6.

Figure 7. Effects of fins on longitudinal aerodynamic characteristics of model.
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(b) L/D and Cm versus a at M = 1.6.

Figure 7. Continued.
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(c) C L and CD versus a at M = 2.0.

Figure 7. Continued.
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(d) LID and Cm versus a at M = 2.0.

Figure 7. Continued.
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(e) C L and C D versus a at M = 2.5.

Figure 7. Continued.
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