27 research outputs found

    Inertial focusing of cancer cell lines in curvilinear microchannels

    Get PDF
    Circulating tumor cells (CTCs) are rare cancer cells, which originate from the primary tumors and migrate to the bloodstream. Separation of CTCs from blood is critical because metastatic CTCs might hold different genomic and phenotypic properties compared to primary tumor cells. In this regard, accurate prognosis and effective treatment methods are necessary. For this purpose, focusing biological particles and cells using microfluidic systems have been implemented as an efficient CTCs enumeration and enrichment method. Passive, continuous, label-free and parallelizable size-dependent focusing based on hydrodynamic forces is preferred in this study to sort cancer cells while avoiding cell death and achieving high throughput. The focusing behavior of MDA-MB-231 (11–22 μm), Jurkat (8–17 μm), K562 (8–22 μm), and HeLa (16–29 μm) was examined with respect to different Reynolds numbers and Dean numbers. The effect of curvature on cell focusing was carefully assessed. The focusing positions of the cells clearly indicated that isolations of MDA cells from MDA-Jurkat cell mixtures as well as of HeLa cells from HeLa-Jurkat cell mixtures were possible by using the curvilinear channels with a curvature angle of 280° at the Reynolds number of 121. © 2019 The Author(s

    Molecular pathways to therapeutics: Paradigms and challenges in oncology meeting report: Carcinogenesis 2015

    No full text
    The search for the most effective therapy with minimum side effects has always been the goal of oncologists and efforts to develop such therapies through understanding disease mechanisms has been the focus of many basic scientists in cancer research, leading to a common interest of convergence. The 5 th International Conference organized by the Carcinogenesis Foundation, USA and Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, India, was held between February 11 th and 13 th 2015, at ACTREC. During these proceedings, the scientific community engaged in oncology research discussed novel ideas emerging from the laboratory and their translation into improved clinical outcomes. However, the lack of major success in the genesis of novel cancer therapeutics that is safe and provides long-term relief to patients is a challenge that needs to be overcome. The focus of this meeting was to highlight these challenges and to encourage collaborations between scientists and clinicians and clearly a message through exemplary scientific contribution was conveyed to all the dedicated scientists and clinician that even if two decades of tireless work on a single idea does not generate a reliable and safe therapy, the combat to rein cancer must not cease. In this report we have communicated some of the outstanding work done in the areas of cancer therapeutics, biomarkers and prevention and described the salient observations associated with cancer stem cells in disease progression and some of the pathways implicated in tumor progression

    Interventional radiology preparedness during coronavirus disease (COVID-19) pandemic

    No full text
    The COVID-19 pandemic has affected every sector of healthcare. Interventional Radiology in many instances continues to provide frontline care during this pandemic. The purpose of this article is to assist Interventional Radiologists in their preparation to face the challenges, by summarizing global experiences and guidelines. We provide a basic framework that can be used to prepare institue specific guidelines in coordination with multidisciplinary teams and hospital administration

    A versatile method for enumeration and characterization of circulating tumor cells from patients with breast cancer

    No full text
    Aim: To establish a standardized protocol for the isolation and enumeration of circulating tumor cells (CTCs) from peripheral blood of patients with metastatic breast cancer.Methods: The protocol used tumor cells spiked in a lymphoid cell line with detection by flow cytometry and quantitative reverse transcription polymerase chain reaction (QRT-PCR). Cells of the human mammary cancer subtypes were spiked into Jurkat cells, which served as the lymphocyte designate in numbers from 10 to 500 per 105 Jurkat cells. This mixed population was probed for CD45, EpCAM, and pancytokeratin acquired from flow cytometry and characterized by microscopy. QRT-PCR was done for CK-19, MUC-1, EpCAM, and GAPDH. Validation was attained with blood samples from 22 patients with metastatic breast cancer and 20 healthy individuals.Results: Flow cytometry could detect 1 breast cancer cell per 100,000 Jurkat cells, with similar detection levels in the breast cancer subtypes. Samples from patients with breast cancer showed a range of CTCs from 1-85 per 10 mL of blood. Quantitation of expression for EpCAM, CK-19, Muc-1, and Her2neu confirmed the presence of CTCs in 76% of samples.Conclusion: Density gradient and immunomagnetic enrichment accomplished isolation of CTCs and quantitation was achieved using flow cytometry. Combined QRT-PCR and imaging further validated these findings, rendering a robust methodology
    corecore