163 research outputs found

    Pathomorphological effects of Alloxan induced acute hypoglycaemia in rabbits

    Get PDF
    Alloxan is one of the frequently used beta-cytotoxic agents for the induction of Type-1 diabetes mellitus in animal models and is the drug of choice in rabbits. Its beta-cytotoxic action results in a sudden release of insulin leading to severe hypoglycaemia and even mortality if glucose therapy is not given. In the present investigation the pathological effects of alloxan induced acute hypoglycaemia were studied in rabbits. New Zealand White rabbits, 1–1.5 kg body weight, were administered alloxan @100 mg/kg b.w., as a single intravenous dose. Blood glucose levels were monitored (0 h, 20 min, 1 h, and then hourly up to 5 h) and clinical signs noted. Rabbits dead due to hypoglycaemia were necropsied and histopathology performed. Severe histopathological changes were observed especially in the brain (neuronal degeneration and necrosis), kidneys (nephrosis, nephritis) and liver (hepatosis, hepatitis) and also, other organs. Histopathological observation of beta-cytolysis was suggestive that the drug induced hypoglycaemia is insulin mediated. It was concluded that acute hypoglycaemia causes severe pathological changes and the alloxan induced immediate hypoglycaemia if not managed in time, might exacerbate the pathological effects of hyperglycaemia in the induced diabetic models.Keywords: Alloxan hypoglycaemia; Pathology; Rabbit

    Treatment of supra condylar fractures of humerus in children, a SKIMS medical college study

    Get PDF
    Background: Supracondylar fractures of the humerus account for sixty percent of all fractures around the elbow in children. Delayed presentation of these fractures is very common even in developed countries. The aim of the present study was to evaluate the clinical, radiological and functional results following closed reduction (C/R) and percutaneous pinning of widely displaced supracondylar fractures of humerus. An objective of this study was to study supracondylar fractures of humerus in children in Skims medical College.Methods: A total 86 patients with displaced extension type supracondylar fractures (gartland type III) of humerus were managed by closed reduction and percutaneous fixation at Skims medical college after achieving optimal and satisfactory reduction. There were 52 boys and 28 girls. Average age was 6.69 years (range 2-12).Results: A total 86 patients were successfully treated with C/R and cross pinning. 6 patients were lost to follow-up. 80 patients with a minimum follow-up period of 12 months formed the basis of this study.Conclusions: C/R and pinning is effective method despite delayed presentation. Strict anatomical reduction and stable fixation minimises the risk of developing cubitus varus deformity

    Polycomb-mediated chromatin compaction weathers the STORM

    Get PDF
    A recent super-resolution imaging study by Boettiger et al. elegantly demonstrates that three epigenetically defined, and functionally disparate, chromatin states have distinct folding characteristics in Drosophila nuclei

    Friction and wear properties of nano-Si<inf>3</inf>N<inf>4</inf>/nano-SiC composite under nanolubricated conditions

    Get PDF
    Friction and wear properties of nano-Si3N4/nano-SiC composite were studied under nanolubricated conditions. Mineral oil mixed with nanoparticles of diamond was used as lubricant. A friction coefficient of 0.043 and a wear coefficient of 4.2×10-7 were obtained for nano-Si3N4/nano-SiC composite under normal load of 600 N with mineral oil + 0.5 wt% nanodiamond, whereas a friction coefficient of 0.077 and a wear coefficient of 10.3×10-7 were obtained for nano-Si3N4/nano-SiC composite under normal load of 600 N with mineral oil. 3D surface profilometer was used to study the surface morphology of wear scars. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies were conducted to illustrate reduction in friction and wear

    Dissociation of CAK from Core TFIIH Reveals a Functional Link between XP-G/CS and the TFIIH Disassembly State

    Get PDF
    Transcription factor II H (TFIIH) is comprised of core TFIIH and Cdk-activating kinase (CAK) complexes. Here, we investigated the molecular and cellular manifestation of the TFIIH compositional changes by XPG truncation mutations. We showed that both core TFIIH and CAK are rapidly recruited to damage sites in repair-proficient cells. Chromatin immunoprecipitation against TFIIH and CAK components revealed a physical engagement of CAK in nucleotide excision repair (NER). While XPD recruitment to DNA damage was normal, CAK was not recruited in severe XP-G and XP-G/CS cells, indicating that the associations of CAK and XPD to core TFIIH are differentially affected. A CAK inhibition approach showed that CAK activity is not required for assembling pre-incision machinery in vivo or for removing genomic photolesions. Instead, CAK is involved in Ser5-phosphorylation and UV-induced degradation of RNA polymerase II. The CAK inhibition impaired transcription from undamaged and UV-damaged reporter, and partially decreased transcription of p53-dependent genes. The overall results demonstrated that a) XP-G/CS mutations affect the disassembly state of TFIIH resulting in the dissociation of CAK, but not XPD from core TFIIH, and b) CAK activity is not essential for global genomic repair but involved in general transcription and damage-induced RNA polymerase II degradation

    Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromium is a toxic heavy metal, which primarily exists in two inorganic forms, Cr(VI) and Cr(III). Chromate [Cr(VI)] is carcinogenic, mutational, and teratogenic due to its strong oxidizing nature. Biotransformation of Cr(VI) to less-toxic Cr(III) by chromate-resistant and reducing bacteria has offered an ecological and economical option for chromate detoxification and bioremediation. However, knowledge of the genetic determinants for chromate resistance and reduction has been limited so far. Our main aim was to investigate chromate resistance and reduction by <it>Bacillus cereus </it>SJ1, and to further study the underlying mechanisms at the molecular level using the obtained genome sequence.</p> <p>Results</p> <p><it>Bacillus cereus </it>SJ1 isolated from chromium-contaminated wastewater of a metal electroplating factory displayed high Cr(VI) resistance with a minimal inhibitory concentration (MIC) of 30 mM when induced with Cr(VI). A complete bacterial reduction of 1 mM Cr(VI) was achieved within 57 h. By genome sequence analysis, a putative chromate transport operon, <it>chrIA</it>1, and two additional <it>chrA </it>genes encoding putative chromate transporters that likely confer chromate resistance were identified. Furthermore, we also found an azoreductase gene <it>azoR </it>and four nitroreductase genes <it>nitR </it>possibly involved in chromate reduction. Using reverse transcription PCR (RT-PCR) technology, it was shown that expression of adjacent genes <it>chrA</it>1 and <it>chrI </it>was induced in response to Cr(VI) but expression of the other two chromate transporter genes <it>chrA</it>2 and <it>chrA</it>3 was constitutive. In contrast, chromate reduction was constitutive in both phenotypic and gene expression analyses. The presence of a resolvase gene upstream of <it>chrIA</it>1, an arsenic resistance operon and a gene encoding Tn7-like transposition proteins ABBCCCD downstream of <it>chrIA</it>1 in <it>B. cereus </it>SJ1 implied the possibility of recent horizontal gene transfer.</p> <p>Conclusion</p> <p>Our results indicate that expression of the chromate transporter gene <it>chrA</it>1 was inducible by Cr(VI) and most likely regulated by the putative transcriptional regulator ChrI. The bacterial Cr(VI)-resistant level was also inducible. The presence of an adjacent arsenic resistance gene cluster nearby the <it>chrIA</it>1 suggested that strong selective pressure by chromium and arsenic could cause bacterial horizontal gene transfer. Such events may favor the survival and increase the resistance level of <it>B. cereus </it>SJ1.</p

    A proposal for a CT driven classification of left colon acute diverticulitis

    Get PDF
    Computed tomography (CT) imaging is the most appropriate diagnostic tool to confirm suspected left colonic diverticulitis. However, the utility of CT imaging goes beyond accurate diagnosis of diverticulitis; the grade of severity on CT imaging may drive treatment planning of patients presenting with acute diverticulitis. The appropriate management of left colon acute diverticulitis remains still debated because of the vast spectrum of clinical presentations and different approaches to treatment proposed. The authors present a new simple classification system based on both CT scan results driving decisions making management of acute diverticulitis that may be universally accepted for day to day practice

    Multi-ancestry genome-wide association study of major depression aids locus discovery, fine mapping, gene prioritization and causal inference.

    Get PDF
    Most genome-wide association studies (GWAS) of major depression (MD) have been conducted in samples of European ancestry. Here we report a multi-ancestry GWAS of MD, adding data from 21 cohorts with 88,316 MD cases and 902,757 controls to previously reported data. This analysis used a range of measures to define MD and included samples of African (36% of effective sample size), East Asian (26%) and South Asian (6%) ancestry and Hispanic/Latin American participants (32%). The multi-ancestry GWAS identified 53 significantly associated novel loci. For loci from GWAS in European ancestry samples, fewer than expected were transferable to other ancestry groups. Fine mapping benefited from additional sample diversity. A transcriptome-wide association study identified 205 significantly associated novel genes. These findings suggest that, for MD, increasing ancestral and global diversity in genetic studies may be particularly important to ensure discovery of core genes and inform about transferability of findings

    Refining transcriptional programs in kidney development by integration of deep RNA-sequencing and array-based spatial profiling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The developing mouse kidney is currently the best-characterized model of organogenesis at a transcriptional level. Detailed spatial maps have been generated for gene expression profiling combined with systematic <it>in situ </it>screening. These studies, however, fall short of capturing the transcriptional complexity arising from each locus due to the limited scope of microarray-based technology, which is largely based on "gene-centric" models.</p> <p>Results</p> <p>To address this, the polyadenylated RNA and microRNA transcriptomes of the 15.5 dpc mouse kidney were profiled using strand-specific RNA-sequencing (RNA-Seq) to a depth sufficient to complement spatial maps from pre-existing microarray datasets. The transcriptional complexity of RNAs arising from mouse RefSeq loci was catalogued; including 3568 alternatively spliced transcripts and 532 uncharacterized alternate 3' UTRs. Antisense expressions for 60% of RefSeq genes was also detected including uncharacterized non-coding transcripts overlapping kidney progenitor markers, Six2 and Sall1, and were validated by section <it>in situ </it>hybridization. Analysis of genes known to be involved in kidney development, particularly during mesenchymal-to-epithelial transition, showed an enrichment of non-coding antisense transcripts extended along protein-coding RNAs.</p> <p>Conclusion</p> <p>The resulting resource further refines the transcriptomic cartography of kidney organogenesis by integrating deep RNA sequencing data with locus-based information from previously published expression atlases. The added resolution of RNA-Seq has provided the basis for a transition from classical gene-centric models of kidney development towards more accurate and detailed "transcript-centric" representations, which highlights the extent of transcriptional complexity of genes that direct complex development events.</p
    • …
    corecore