41 research outputs found

    Deep regression learning with optimal loss function

    Full text link
    In this paper, we develop a novel efficient and robust nonparametric regression estimator under a framework of feedforward neural network. There are several interesting characteristics for the proposed estimator. First, the loss function is built upon an estimated maximum likelihood function, who integrates the information from observed data, as well as the information from data structure. Consequently, the resulting estimator has desirable optimal properties, such as efficiency. Second, different from the traditional maximum likelihood estimation (MLE), the proposed method avoid the specification of the distribution, hence is flexible to any kind of distribution, such as heavy tails, multimodal or heterogeneous distribution. Third, the proposed loss function relies on probabilities rather than direct observations as in least squares, contributing the robustness in the proposed estimator. Finally, the proposed loss function involves nonparametric regression function only. This enables a direct application of existing packages, simplifying the computation and programming. We establish the large sample property of the proposed estimator in terms of its excess risk and minimax near-optimal rate. The theoretical results demonstrate that the proposed estimator is equivalent to the true MLE in which the density function is known. Our simulation studies show that the proposed estimator outperforms the existing methods in terms of prediction accuracy, efficiency and robustness. Particularly, it is comparable to the true MLE, and even gets better as the sample size increases. This implies that the adaptive and data-driven loss function from the estimated density may offer an additional avenue for capturing valuable information. We further apply the proposed method to four real data examples, resulting in significantly reduced out-of-sample prediction errors compared to existing methods

    Type-IV DCT, DST, and MDCT algorithms with reduced numbers of arithmetic operations

    Full text link
    We present algorithms for the type-IV discrete cosine transform (DCT-IV) and discrete sine transform (DST-IV), as well as for the modified discrete cosine transform (MDCT) and its inverse, that achieve a lower count of real multiplications and additions than previously published algorithms, without sacrificing numerical accuracy. Asymptotically, the operation count is reduced from ~2NlogN to ~(17/9)NlogN for a power-of-two transform size N, and the exact count is strictly lowered for all N > 4. These results are derived by considering the DCT to be a special case of a DFT of length 8N, with certain symmetries, and then pruning redundant operations from a recent improved fast Fourier transform algorithm (based on a recursive rescaling of the conjugate-pair split radix algorithm). The improved algorithms for DST-IV and MDCT follow immediately from the improved count for the DCT-IV.Comment: 11 page

    Type-II/III DCT/DST algorithms with reduced number of arithmetic operations

    Full text link
    We present algorithms for the discrete cosine transform (DCT) and discrete sine transform (DST), of types II and III, that achieve a lower count of real multiplications and additions than previously published algorithms, without sacrificing numerical accuracy. Asymptotically, the operation count is reduced from ~ 2N log_2 N to ~ (17/9) N log_2 N for a power-of-two transform size N. Furthermore, we show that a further N multiplications may be saved by a certain rescaling of the inputs or outputs, generalizing a well-known technique for N=8 by Arai et al. These results are derived by considering the DCT to be a special case of a DFT of length 4N, with certain symmetries, and then pruning redundant operations from a recent improved fast Fourier transform algorithm (based on a recursive rescaling of the conjugate-pair split radix algorithm). The improved algorithms for DCT-III, DST-II, and DST-III follow immediately from the improved count for the DCT-II.Comment: 9 page

    Qwen Technical Report

    Full text link
    Large language models (LLMs) have revolutionized the field of artificial intelligence, enabling natural language processing tasks that were previously thought to be exclusive to humans. In this work, we introduce Qwen, the first installment of our large language model series. Qwen is a comprehensive language model series that encompasses distinct models with varying parameter counts. It includes Qwen, the base pretrained language models, and Qwen-Chat, the chat models finetuned with human alignment techniques. The base language models consistently demonstrate superior performance across a multitude of downstream tasks, and the chat models, particularly those trained using Reinforcement Learning from Human Feedback (RLHF), are highly competitive. The chat models possess advanced tool-use and planning capabilities for creating agent applications, showcasing impressive performance even when compared to bigger models on complex tasks like utilizing a code interpreter. Furthermore, we have developed coding-specialized models, Code-Qwen and Code-Qwen-Chat, as well as mathematics-focused models, Math-Qwen-Chat, which are built upon base language models. These models demonstrate significantly improved performance in comparison with open-source models, and slightly fall behind the proprietary models.Comment: 59 pages, 5 figure

    Towards Semantics-Enhanced Pre-Training: Can Lexicon Definitions Help Learning Sentence Meanings?

    No full text
    Self-supervised pre-training techniques, albeit relying on large amounts of text, have enabled rapid growth in learning language representations for natural language understanding. However, as radically empirical models on sentences, they are subject to the input data distribution, inevitably incorporating data bias and reporting bias, which may lead to inaccurate understanding of sentences. To address this problem, we propose to adopt a human learner's approach: when we cannot make sense of a word in a sentence, we often consult the dictionary for specific meanings; but can the same work for empirical models? In this work, we try to inform the pre-trained masked language models of word meanings for semantics-enhanced pre-training. To achieve a contrastive and holistic view of word meanings, a definition pair of two related words is presented to the masked language model such that the model can better associate a word with its crucial semantic features. Both intrinsic and extrinsic evaluations validate the proposed approach on semantics-orientated tasks, with an almost negligible increase of training data

    Process of overburden failure in steeply inclined multi-seam mining: insights from physical modelling

    No full text
    Ground surface damage caused by steeply inclined coal seam mining is widely distributed in China, but there is little research on the failure process and movement mechanism of strata induced by steeply inclined multi-seam mining. In this paper, a physical model test is carried out to study the failure process and movement mechanism of overburden in steeply inclined multi-seam stepwise mining. The results show that at the initial stage, the main failure of the rock mass is the small-scale collapse at the initial cut and the roof (stability stage of the rock mass). After the roof is exposed over a certain range, the rock mass in the downhill direction slips into the goaf and gradually destroys the interburdens of the goaf, similar to the displacement effect of dominoes (severe failure stage of the rock mass). When the structure of the goaf fails, the overburden subsides, causing extensive damage to the ground surface. The surface damage directly above the goaf is mainly caused by serious subsidence deformation, while the surface damage in the downhill direction is dominated by cracks
    corecore