1,202 research outputs found
Absence of zero-temperature transmission rate of a double-chain tight-binding model for DNA with random sequence of nucleotides in thermodynamic limit
The zero-temperature transmission rate spectrum of a double-chain
tight-binding model for real DNA is calculated. It is shown that a band of
extended-like states exists only for finite chain length with strong
inter-chain coupling. While the whole spectrum tends to zero in thermodynamic
limit, regardless of the strength of inter-chain coupling. It is also shown
that a more faithful model for real DNA with periodic sugar-phosphate chains in
backbone structures can be mapped into the above simple double-chain
tight-binding model. Combined with above results, the transmission rate of real
DNA with long random sequence of nucleotides is expected to be poor.Comment: 5 pages, 9 figure
The theory of magnetic field induced domain-wall propagation in magnetic nanowires
A global picture of magnetic domain wall (DW) propagation in a nanowire
driven by a magnetic field is obtained: A static DW cannot exist in a
homogeneous magnetic nanowire when an external magnetic field is applied. Thus,
a DW must vary with time under a static magnetic field. A moving DW must
dissipate energy due to the Gilbert damping. As a result, the wire has to
release its Zeeman energy through the DW propagation along the field direction.
The DW propagation speed is proportional to the energy dissipation rate that is
determined by the DW structure. An oscillatory DW motion, either the precession
around the wire axis or the breath of DW width, should lead to the speed
oscillation.Comment: 4 pages, 2 figure
Diffusion limited aggregation as a Markovian process. Part I: bond-sticking conditions
Cylindrical lattice Diffusion Limited Aggregation (DLA), with a narrow width
N, is solved using a Markovian matrix method. This matrix contains the
probabilities that the front moves from one configuration to another at each
growth step, calculated exactly by solving the Laplace equation and using the
proper normalization. The method is applied for a series of approximations,
which include only a finite number of rows near the front. The matrix is then
used to find the weights of the steady state growing configurations and the
rate of approaching this steady state stage. The former are then used to find
the average upward growth probability, the average steady-state density and the
fractal dimensionality of the aggregate, which is extrapolated to a value near
1.64.Comment: 24 pages, 20 figure
Temperature dependence of current self-oscillations and electric field domains in sequential tunneling doped superlattices
We examine how the current--voltage characteristics of a doped weakly coupled
superlattice depends on temperature. The drift velocity of a discrete drift
model of sequential tunneling in a doped GaAs/AlAs superlattice is calculated
as a function of temperature. Numerical simulations and theoretical arguments
show that increasing temperature favors the appearance of current
self-oscillations at the expense of static electric field domain formation. Our
findings agree with available experimental evidence.Comment: 7 pages, 5 figure
Comparison of Structural Development and Biochemical Accumulation of Waxy and Non-waxy Wheat Caryopses
This study was conducted to compare structural development and biochemical accumulation of waxy and non-waxy wheat (NW) caryopses. The caryopses’ microstructure of the waxy wheat (WW) and NW cultivars at different developmental stages were observed under light, fluorescence, and scanning electron microscope. The results were as follows: Compared with NW,WWhad a shorter maturation duration, which was reflected in several following characteristics. Programmed cell death of the pericarp began earlier, and the chlorophyll-containing layer in the pericarp was smaller. Vacuoles in chalazal cells accumulated more tannins at different developmental stages. Starch granules and protein bodies in the endosperm showed a higher accumulation level in developing caryopses, and aleurone cells were larger in size with larger numbers of aleurone grains. An analysis of the element content indicated that the mineral elements Mg, P, K, and Ca exhibited a higher content, while the heavy elements Cr, Cd, and Pb exhibited a lower content in the aleurone layer
Analysing Lyapunov spectra of chaotic dynamical systems
It is shown that the asymptotic spectra of finite-time Lyapunov exponents of
a variety of fully chaotic dynamical systems can be understood in terms of a
statistical analysis. Using random matrix theory we derive numerical and in
particular analytical results which provide insights into the overall behaviour
of the Lyapunov exponents particularly for strange attractors. The
corresponding distributions for the unstable periodic orbits are investigated
for comparison.Comment: 4 pages, 4 figure
STM characterization of the Si-P heterodimer
We use scanning tunneling microscopy (STM) and Auger electron spectroscopy to
study the behavior of adsorbed phosphine (PH) on Si(001), as a function
of annealing temperature, paying particular attention to the formation of the
Si-P heterodimer. Dosing the Si(001) surface with 0.002 Langmuirs of
PH results in the adsorption of PH (x=2,3) onto the surface and
some etching of Si to form individual Si ad-dimers. Annealing to 350C
results in the incorporation of P into the surface layer to form Si-P
heterodimers and the formation of short 1-dimensional Si dimer chains and
monohydrides. In filled state STM images, isolated Si-P heterodimers appear as
zig-zag features on the surface due to the static dimer buckling induced by the
heterodimer. In the presence of a moderate coverage of monohydrides this static
buckling is lifted, rending the Si-P heterodimers invisible in filled state
images. However, we find that we can image the heterodimer at all H coverages
using empty state imaging. The ability to identify single P atoms incorporated
into Si(001) will be invaluable in the development of nanoscale electronic
devices based on controlled atomic-scale doping of Si.Comment: 6 pages, 4 figures (only 72dpi
Split-off dimer defects on the Si(001)2x1 surface
Dimer vacancy (DV) defect complexes in the Si(001)2x1 surface were
investigated using high-resolution scanning tunneling microscopy and first
principles calculations. We find that under low bias filled-state tunneling
conditions, isolated 'split-off' dimers in these defect complexes are imaged as
pairs of protrusions while the surrounding Si surface dimers appear as the
usual 'bean-shaped' protrusions. We attribute this to the formation of pi-bonds
between the two atoms of the split-off dimer and second layer atoms, and
present charge density plots to support this assignment. We observe a local
brightness enhancement due to strain for different DV complexes and provide the
first experimental confirmation of an earlier prediction that the 1+2-DV
induces less surface strain than other DV complexes. Finally, we present a
previously unreported triangular shaped split-off dimer defect complex that
exists at SB-type step edges, and propose a structure for this defect involving
a bound Si monomer.Comment: 8 pages, 7 figures, submitted to Phys. Rev.
Selective deletion of PPARβ/δ in fibroblasts causes dermal fibrosis by attenuated LRG1 expression.
Connective tissue diseases of the skin are characterized by excessive collagen deposition in the skin and internal organs. Fibroblasts play a pivotal role in the clinical presentation of these conditions. Nuclear receptor peroxisome-proliferator activated receptors (PPARs) are therapeutic targets for dermal fibrosis, but the contribution of the different PPAR subtypes are poorly understood. Particularly, the role of fibroblast PPARβ/δ in dermal fibrosis has not been elucidated. Thus, we generated a mouse strain with selective deletion of PPARβ/δ in the fibroblast (FSPCre- <i>Pparb/d</i> <sup>-/-</sup> ) and interrogated its epidermal and dermal transcriptome profiles. We uncovered a downregulated gene, leucine-rich alpha-2-glycoprotein-1 ( <i>Lrg1</i> ), of previously unknown function in skin development and architecture. Our findings suggest that the regulation of <i>Lrg1</i> by PPARβ/δ in fibroblasts is an important signaling conduit integrating PPARβ/δ and TGFβ1-signaling networks in skin health and disease. Thus, the FSPCre- <i>Pparb/d</i> <sup>-/-</sup> mouse model could serve as a novel tool in the current gunnery of animal models to better understand dermal fibrosis
The energy spectrum of all-particle cosmic rays around the knee region observed with the Tibet-III air-shower array
We have already reported the first result on the all-particle spectrum around
the knee region based on data from 2000 November to 2001 October observed by
the Tibet-III air-shower array. In this paper, we present an updated result
using data set collected in the period from 2000 November through 2004 October
in a wide range over 3 decades between eV and eV, in which
the position of the knee is clearly seen at around 4 PeV. The spectral index is
-2.68 0.02(stat.) below 1PeV, while it is -3.12 0.01(stat.) above 4
PeV in the case of QGSJET+HD model, and various systematic errors are under
study now.Comment: 12 pages, 7 figures, accepted by Advances in space researc
- …
