1,202 research outputs found

    Absence of zero-temperature transmission rate of a double-chain tight-binding model for DNA with random sequence of nucleotides in thermodynamic limit

    Full text link
    The zero-temperature transmission rate spectrum of a double-chain tight-binding model for real DNA is calculated. It is shown that a band of extended-like states exists only for finite chain length with strong inter-chain coupling. While the whole spectrum tends to zero in thermodynamic limit, regardless of the strength of inter-chain coupling. It is also shown that a more faithful model for real DNA with periodic sugar-phosphate chains in backbone structures can be mapped into the above simple double-chain tight-binding model. Combined with above results, the transmission rate of real DNA with long random sequence of nucleotides is expected to be poor.Comment: 5 pages, 9 figure

    The theory of magnetic field induced domain-wall propagation in magnetic nanowires

    Full text link
    A global picture of magnetic domain wall (DW) propagation in a nanowire driven by a magnetic field is obtained: A static DW cannot exist in a homogeneous magnetic nanowire when an external magnetic field is applied. Thus, a DW must vary with time under a static magnetic field. A moving DW must dissipate energy due to the Gilbert damping. As a result, the wire has to release its Zeeman energy through the DW propagation along the field direction. The DW propagation speed is proportional to the energy dissipation rate that is determined by the DW structure. An oscillatory DW motion, either the precession around the wire axis or the breath of DW width, should lead to the speed oscillation.Comment: 4 pages, 2 figure

    Diffusion limited aggregation as a Markovian process. Part I: bond-sticking conditions

    Full text link
    Cylindrical lattice Diffusion Limited Aggregation (DLA), with a narrow width N, is solved using a Markovian matrix method. This matrix contains the probabilities that the front moves from one configuration to another at each growth step, calculated exactly by solving the Laplace equation and using the proper normalization. The method is applied for a series of approximations, which include only a finite number of rows near the front. The matrix is then used to find the weights of the steady state growing configurations and the rate of approaching this steady state stage. The former are then used to find the average upward growth probability, the average steady-state density and the fractal dimensionality of the aggregate, which is extrapolated to a value near 1.64.Comment: 24 pages, 20 figure

    Temperature dependence of current self-oscillations and electric field domains in sequential tunneling doped superlattices

    Full text link
    We examine how the current--voltage characteristics of a doped weakly coupled superlattice depends on temperature. The drift velocity of a discrete drift model of sequential tunneling in a doped GaAs/AlAs superlattice is calculated as a function of temperature. Numerical simulations and theoretical arguments show that increasing temperature favors the appearance of current self-oscillations at the expense of static electric field domain formation. Our findings agree with available experimental evidence.Comment: 7 pages, 5 figure

    Comparison of Structural Development and Biochemical Accumulation of Waxy and Non-waxy Wheat Caryopses

    Get PDF
    This study was conducted to compare structural development and biochemical accumulation of waxy and non-waxy wheat (NW) caryopses. The caryopses’ microstructure of the waxy wheat (WW) and NW cultivars at different developmental stages were observed under light, fluorescence, and scanning electron microscope. The results were as follows: Compared with NW,WWhad a shorter maturation duration, which was reflected in several following characteristics. Programmed cell death of the pericarp began earlier, and the chlorophyll-containing layer in the pericarp was smaller. Vacuoles in chalazal cells accumulated more tannins at different developmental stages. Starch granules and protein bodies in the endosperm showed a higher accumulation level in developing caryopses, and aleurone cells were larger in size with larger numbers of aleurone grains. An analysis of the element content indicated that the mineral elements Mg, P, K, and Ca exhibited a higher content, while the heavy elements Cr, Cd, and Pb exhibited a lower content in the aleurone layer

    Analysing Lyapunov spectra of chaotic dynamical systems

    Full text link
    It is shown that the asymptotic spectra of finite-time Lyapunov exponents of a variety of fully chaotic dynamical systems can be understood in terms of a statistical analysis. Using random matrix theory we derive numerical and in particular analytical results which provide insights into the overall behaviour of the Lyapunov exponents particularly for strange attractors. The corresponding distributions for the unstable periodic orbits are investigated for comparison.Comment: 4 pages, 4 figure

    STM characterization of the Si-P heterodimer

    Full text link
    We use scanning tunneling microscopy (STM) and Auger electron spectroscopy to study the behavior of adsorbed phosphine (PH3_{3}) on Si(001), as a function of annealing temperature, paying particular attention to the formation of the Si-P heterodimer. Dosing the Si(001) surface with {\sim}0.002 Langmuirs of PH3_{3} results in the adsorption of PHx_{x} (x=2,3) onto the surface and some etching of Si to form individual Si ad-dimers. Annealing to 350^{\circ}C results in the incorporation of P into the surface layer to form Si-P heterodimers and the formation of short 1-dimensional Si dimer chains and monohydrides. In filled state STM images, isolated Si-P heterodimers appear as zig-zag features on the surface due to the static dimer buckling induced by the heterodimer. In the presence of a moderate coverage of monohydrides this static buckling is lifted, rending the Si-P heterodimers invisible in filled state images. However, we find that we can image the heterodimer at all H coverages using empty state imaging. The ability to identify single P atoms incorporated into Si(001) will be invaluable in the development of nanoscale electronic devices based on controlled atomic-scale doping of Si.Comment: 6 pages, 4 figures (only 72dpi

    Split-off dimer defects on the Si(001)2x1 surface

    Full text link
    Dimer vacancy (DV) defect complexes in the Si(001)2x1 surface were investigated using high-resolution scanning tunneling microscopy and first principles calculations. We find that under low bias filled-state tunneling conditions, isolated 'split-off' dimers in these defect complexes are imaged as pairs of protrusions while the surrounding Si surface dimers appear as the usual 'bean-shaped' protrusions. We attribute this to the formation of pi-bonds between the two atoms of the split-off dimer and second layer atoms, and present charge density plots to support this assignment. We observe a local brightness enhancement due to strain for different DV complexes and provide the first experimental confirmation of an earlier prediction that the 1+2-DV induces less surface strain than other DV complexes. Finally, we present a previously unreported triangular shaped split-off dimer defect complex that exists at SB-type step edges, and propose a structure for this defect involving a bound Si monomer.Comment: 8 pages, 7 figures, submitted to Phys. Rev.

    Selective deletion of PPARβ/δ in fibroblasts causes dermal fibrosis by attenuated LRG1 expression.

    Get PDF
    Connective tissue diseases of the skin are characterized by excessive collagen deposition in the skin and internal organs. Fibroblasts play a pivotal role in the clinical presentation of these conditions. Nuclear receptor peroxisome-proliferator activated receptors (PPARs) are therapeutic targets for dermal fibrosis, but the contribution of the different PPAR subtypes are poorly understood. Particularly, the role of fibroblast PPARβ/δ in dermal fibrosis has not been elucidated. Thus, we generated a mouse strain with selective deletion of PPARβ/δ in the fibroblast (FSPCre- <i>Pparb/d</i> <sup>-/-</sup> ) and interrogated its epidermal and dermal transcriptome profiles. We uncovered a downregulated gene, leucine-rich alpha-2-glycoprotein-1 ( <i>Lrg1</i> ), of previously unknown function in skin development and architecture. Our findings suggest that the regulation of <i>Lrg1</i> by PPARβ/δ in fibroblasts is an important signaling conduit integrating PPARβ/δ and TGFβ1-signaling networks in skin health and disease. Thus, the FSPCre- <i>Pparb/d</i> <sup>-/-</sup> mouse model could serve as a novel tool in the current gunnery of animal models to better understand dermal fibrosis

    The energy spectrum of all-particle cosmic rays around the knee region observed with the Tibet-III air-shower array

    Get PDF
    We have already reported the first result on the all-particle spectrum around the knee region based on data from 2000 November to 2001 October observed by the Tibet-III air-shower array. In this paper, we present an updated result using data set collected in the period from 2000 November through 2004 October in a wide range over 3 decades between 101410^{14} eV and 101710^{17} eV, in which the position of the knee is clearly seen at around 4 PeV. The spectral index is -2.68 ±\pm 0.02(stat.) below 1PeV, while it is -3.12 ±\pm 0.01(stat.) above 4 PeV in the case of QGSJET+HD model, and various systematic errors are under study now.Comment: 12 pages, 7 figures, accepted by Advances in space researc
    corecore