385 research outputs found

    Clinical Correlates of High Cervical Fractional Anisotropy in Acute Cervical Spinal Cord Injury

    Get PDF
    Objective: Fractional anisotropy (FA) of the high cervical cord (C1-C2), rostral to the injury site, correlates with upper limb function in patients with chronic cervical spinal cord injury (SCI). In acute cervical SCI, this relationship has not been investigated. The objective of this study was to identify functional correlates of FA of the high cervical cord in a series of patients with acute cervical SCI. Methods: Traumatic cervical SCI patients who underwent presurgical cervical spine diffusion tensor imaging at our institution were reviewed for this study. FA of the whole cord as well as the lateralcorticospinal tracts (CSTs) was calculated on axial images from C1-C2. Upper limb motor (C5-T1) and sensory (C2-T1) function scores were extracted from the admission American Spinal Injury Association (ASIA) examinations. Correlation analysis for FA with ASIA examinations was performed using a Pearson correlation. Results: Twelve subjects (9 men, 3 women; mean age 54.7 Ā± 4.0 years) underwent cervical spine diffusion tensor imaging at a mean duration of 3.6 Ā± 0.9 days postinjury. No patient had cord compression or intramedullary T2-weighted hyperintensities within the C1-C2 segments. FA correlated with upper limb motor score (whole cord: r = 0.59, P = .04; CST: 0.67, P = .01) and the ASIA grade (whole cord: r = 0.61, P = .03; CST: r = 0.71, P = .009). No correlation was found between FA and sensory scores. Conclusions: FA of the whole cervical cord as well as the CST, rostral to the injury site, is associated with preserved upper limb motor function as well as superior ASIA grades after acute cervical SCI. FA of the high cervical cord is a potential biomarker of neural injury after acute cervical SCI

    Diffusion Tensor Imaging Correlates with Short-Term Myelopathy Outcome in Patients with Cervical Spondylotic Myelopathy

    Get PDF
    Objective To determine if spinal cord diffusion tensor imaging indexes correlate with short-term clinical outcome in patients undergoing elective cervical spine surgery for cervical spondylotic myelopathy (CSM). Methods A prospective consecutive cohort study was performed in patients undergoing elective cervical spine surgery for CSM. After obtaining informed consent, patients with CSM underwent preoperative T2-weighted magnetic resonance imaging and diffusion tensor imaging of the cervical spine. Fractional anisotropy (FA) values at the level of maximum cord compression and at the noncompressed C1-2 level were calculated on axial images. We recorded the modified Japanese Orthopaedic Association (mJOA) scale, Neck Disability Index, and Short Form-36 physical functioning subscale scores for all patients preoperatively and 3 months postoperatively. Statistical analysis was performed to identify correlations between FA and clinical outcome scores. Results The study included 27 patients (mean age 54.5 years Ā± 1.9, 12 men). The mean postoperative changes in mJOA scale, Neck Disability Index, and Short Form-36 physical functioning subscale scores were 0.9 Ā± 0.3, āˆ’6.0 Ā± 1.9, and 3.4 Ā± 1.9. The mean FA at the level of maximum compression was significantly lower than the mean FA at the C1-2 level (0.5 vs. 0.55, P = 0.01). FA was significantly correlated with change in mJOA scale score (Pearson r = āˆ’0.42, P = 0.02). FA was significantly correlated with the preoperative mJOA scale score (Pearson r = 0.65, P \u3c 0.001). Conclusions Preoperative FA at the level of maximum cord compression significantly correlates with the 3-month change in mJOA scale score among patients with CSM. FA was also significantly associated with preoperative mJOA scale score and is a potential biomarker for spinal cord dysfunction in CSM

    Diffusion Tensor Imaging in a Large Longitudinal Series of Patients With Cervical Spondylotic Myelopathy Correlated With Long-Term Functional Outcome

    Get PDF
    BACKGROUND Fractional anisotropy (FA) of the high cervical cord correlates with upper limb function in acute cervical cord injury. We investigated the correlation between preoperative FA at the level of maximal compression and functional recovery in a group of patients after decompressive surgery for cervical spondylotic myelopathy (CSM). OBJECTIVE To determine the usefulness of FA as a biomarker for severity of CSM and as a prognostic biomarker for improvement after surgery. METHODS Patients received diffusion tensor imaging (DTI) scans preoperatively. FA values of the whole cord cross-section at the level of maximal compression and upper cervical cord (C1-2) were calculated. Functional status was measured using the modified Japanese Orthopedic Association (mJOA) scale preoperatively and at follow-up up to 2 yr. Regression analysis between FA and mJOA was performed. DTI at C4-7 was obtained in controls. RESULTS Forty-four CSM patients enrolled prior to decompression were compared with 24 controls. FA at the level of maximal compression correlated positively with preoperative mJOA score. Preoperative FA correlated inversely with recovery throughout the postoperative period. This was statistically significant at 12 mo postoperation and nearly so at 6 and 24 mo. Patients with preoperative FA0.55. CONCLUSION In the largest longitudinal study of this kind, FA promises a valid biomarker for severity of CSM and postoperative improvement. FA is an objective measure of function and could provide a basis for prognosis. FA is particularly useful if preoperative values are less than 0.55

    Diffusion Tensor Imaging of the Spinal Cord: Insights From Animal and Human Studies

    Get PDF
    Diffusion tensor imaging (DTI) provides a measure of the directional diffusion of water molecules in tissues. The measurement of DTI indexes within the spinal cord provides a quantitative assessment of neural damage in various spinal cord pathologies. DTI studies in animal models of spinal cord injury indicate that DTI is a reliable imaging technique with important histological and functional correlates. These studies demonstrate that DTI is a noninvasive marker of microstructural change within the spinal cord. In human studies, spinal cord DTI shows definite changes in subjects with acute and chronic spinal cord injury, as well as cervical spondylotic myelopathy. Interestingly, changes in DTI indexes are visualized in regions of the cord, which appear normal on conventional magnetic resonance imaging and are remote from the site of cord compression. Spinal cord DTI provides data that can help us understand underlying microstructural changes within the cord and assist in prognostication and planning of therapies. In this article, we review the use of DTI to investigate spinal cord pathology in animals and humans and describe advances in this technique that establish DTI as a promising biomarker for spinal cord disorders

    Increased RPA1 gene dosage affects genomic stability potentially contributing to 17p13.3 duplication syndrome

    Get PDF
    A novel microduplication syndrome involving various-sized contiguous duplications in 17p13.3 has recently been described, suggesting that increased copy number of genes in 17p13.3, particularly PAFAH1B1, is associated with clinical features including facial dysmorphism, developmental delay, and autism spectrum disorder. We have previously shown that patient-derived cell lines from individuals with haploinsufficiency of RPA1, a gene within 17p13.3, exhibit an impaired ATR-dependent DNA damage response (DDR). Here, we show that cell lines from patients with duplications specifically incorporating RPA1 exhibit a different although characteristic spectrum of DDR defects including abnormal S phase distribution, attenuated DNA double strand break (DSB)-induced RAD51 chromatin retention, elevated genomic instability, and increased sensitivity to DNA damaging agents. Using controlled conditional over-expression of RPA1 in a human model cell system, we also see attenuated DSB-induced RAD51 chromatin retention. Furthermore, we find that transient over-expression of RPA1 can impact on homologous recombination (HR) pathways following DSB formation, favouring engagement in aberrant forms of recombination and repair. Our data identifies unanticipated defects in the DDR associated with duplications in 17p13.3 in humans involving modest RPA1 over-expression

    Functional interaction between Lypd6 and nicotinic acetylcholine receptors

    Get PDF
    Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domainā€containing 6 (Lypd6) with nAChRs in human brain extracts, identifying Lypd6 as a novel regulator of nAChR function. Using protein crossā€linking and affinity purification from human temporal cortical extracts, we demonstrate that Lypd6 is a synaptically enriched membraneā€bound protein that binds to multiple nAChR subtypes in the human brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotineā€induced hippocampal inward currents in rat brain slices and decreases nicotineā€induced extracellular signalā€regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit nAChRā€mediated intracellular signaling. We further show that perinatal nicotine exposure in rats (4Ā mg/kg/day through minipumps to dams from embryonic day 7 to postā€natal day 21) significantly increases Lypd6 protein levels in the hippocampus in adulthood, which did not occur after exposure to nicotine in adulthood only. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain, and that Lypd6 is dysregulated by nicotine exposure during early development. [Image: see text] Regulatory proteins of the Lynx family modulate the function of nicotinic receptors (nAChRs). We report for the first time that the Lynx protein Lypd6 binds to nAChRs in human brain extracts, and that recombinant Lypd6 decreases nicotineā€induced ERK phosphorylation and attenuates nicotineā€induced hippocampal inward currents. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain

    Li Wenliang, a face to the frontline healthcare worker? The first doctor to notify the emergence of the SARS-CoV-2 (COVID-19) outbreak

    Get PDF
    Dr Li Wenliang, who lost his life to the novel coronavirus, SARS-CoV-2, became the face of the threat of SARS-CoV-2 to frontline workers, the clinicians taking care of patients. Li, 34, was an ophthalmologist at Wuhan Central Hospital. On 30th December, 2019, when the Wuhan municipal health service sent out an alert, he reportedly warned a closed group of ex-medical school classmates on the WeChat social media site of ā€œSeven cases of severe acute respiratory syndrome (SARS) like illness with links with the Huanan Seafood Wholesale Marketā€ at his hospital. He was among eight people reprimanded by security officers for ā€œspreading rumoursā€. In a tragic turn of events, he subsequently contracted SARS-CoV-2 and, after a period in intensive care, died on the morning of Friday 7th February, 2020 (South China Morning Post, 2020). This case is a stark reminder of the risks of emerging disease outbreaks for healthcare workers (HCWs). Dr Li Wenliangā€™s name is added to the long list of HCW that were at the forefront of outbreaks of SARS, Ebola, MERS and now SARS-CoV-2. It is important to recognise that it was the clinicians in Wuhan who sounded the alarm about the emergence of SARS-CoV-2 which was rapidly identified after these clinicians sent samples to a reference laboratory for next generation sequencing (NGS) (Zhou et al., 2020)

    Global regulation of alternative splicing during myogenic differentiation

    Get PDF
    Recent genome-wide analyses have elucidated the extent of alternative splicing (AS) in mammals, often focusing on comparisons of splice isoforms between differentiated tissues. However, regulated splicing changes are likely to be important in biological transitions such as cellular differentiation, or response to environmental stimuli. To assess the extent and significance of AS in myogenesis, we used splicing-sensitive microarray analysis of differentiating C2C12 myoblasts. We identified 95 AS events that undergo robust splicing transitions during C2C12 differentiation. More than half of the splicing transitions are conserved during differentiation of avian myoblasts, suggesting the products and timing of transitions are functionally significant. The majority of splicing transitions during C2C12 differentiation fall into four temporal patterns and were dependent on the myogenic program, suggesting that they are integral components of myogenic differentiation. Computational analyses revealed enrichment of many sequence motifs within the upstream and downstream intronic regions near the alternatively spliced regions corresponding to binding sites of splicing regulators. Western analyses demonstrated that several splicing regulators undergo dynamic changes in nuclear abundance during differentiation. These findings show that within a developmental context, AS is a highly regulated and conserved process, suggesting a major role for AS regulation in myogenic differentiation.National Institutes of Health (U.S.) (grant number R01GM076493)Ford Foundation (Predoctoral Diversity Fellowship)Baylor College of Medicine. Graduate School of Biomedical Sciences (Baylor Research Advocates for Student Scientists

    Carbon budget of tidal wetlands, estuaries, and shelf waters of eastern North America

    Get PDF
    Author Posting. Ā© American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 32 (2018): 389-416, doi:10.1002/2017GB005790.Carbon cycling in the coastal zone affects global carbon budgets and is critical for understanding the urgent issues of hypoxia, acidification, and tidal wetland loss. However, there are no regional carbon budgets spanning the three main ecosystems in coastal waters: tidal wetlands, estuaries, and shelf waters. Here we construct such a budget for eastern North America using historical data, empirical models, remote sensing algorithms, and processā€based models. Considering the net fluxes of total carbon at the domain boundaries, 59 Ā± 12% (Ā± 2 standard errors) of the carbon entering is from rivers and 41 Ā± 12% is from the atmosphere, while 80 Ā± 9% of the carbon leaving is exported to the open ocean and 20 Ā± 9% is buried. Net lateral carbon transfers between the three main ecosystem types are comparable to fluxes at the domain boundaries. Each ecosystem type contributes substantially to exchange with the atmosphere, with CO2 uptake split evenly between tidal wetlands and shelf waters, and estuarine CO2 outgassing offsetting half of the uptake. Similarly, burial is about equal in tidal wetlands and shelf waters, while estuaries play a smaller but still substantial role. The importance of tidal wetlands and estuaries in the overall budget is remarkable given that they, respectively, make up only 2.4 and 8.9% of the study domain area. This study shows that coastal carbon budgets should explicitly include tidal wetlands, estuaries, shelf waters, and the linkages between them; ignoring any of them may produce a biased picture of coastal carbon cycling.NASA Interdisciplinary Science program Grant Number: NNX14AF93G; NASA Carbon Cycle Science Program Grant Number: NNX14AM37G; NASA Ocean Biology and Biogeochemistry Program Grant Number: NNX11AD47G; National Science Foundation's Chemical Oceanography Program Grant Number: OCEā€12605742018-10-0
    • ā€¦
    corecore