22 research outputs found

    Reasoning about Potential Hidden Traffic Participants by Tracking Occluded Areas

    Get PDF

    Performance enhancement of SSI-LEDs and geometrically confinement of lighting dots by using patterned wafer approaches

    Get PDF
    Solid state incandescent light emitting devices (SSI-LEDs) were first demonstrated in 2013 by Kuo’s group, which have the metal-oxide-semiconductor structure and emit white light directly1. The conductive filaments (CFs) through CAFM figures out that Si wafer has a significant impact on the device performance2, 3, multiplayer dielectric layers structure have also been study to enhance the light emission4. We demonstrate two approaches to improve the performance of SSI-LEDs by using patterned wafer in this work. Please click Additional Files below to see the full abstract

    Automation of the UNICARagil Vehicles

    Get PDF
    The German research project UNICARagil is a collaboration between eight universities and six industrial partners funded by the Federal Ministry of Education and Research. It aims to develop innovative modular architectures and methods for new agile, automated vehicle concepts. This paper summarizes the automation approach of the driverless vehicle concept and its modular realization within the four demonstration vehicles to be built by the consortium. On-board each vehicle, this comprises sensor modules for environment perception and modelling, motion planning for normal driving and safe halts, as well as the respective control algorithms and base functionalities like precise localization. A control room and cloud functionalities provide off-board support to the vehicles, which are additionally addressed in this paper

    Hypoglycemic Effects in Alloxan-Induced Diabetic Rats of the Phenolic Extract from Mongolian Oak Cups Enriched in Ellagic Acid, Kaempferol and Their Derivatives

    No full text
    Our previous reports showed that crude extract prepared with 50% ethanol (ethanol crude extract, ECE) from Mongolian oak cups possessed excellent in vitro antioxidant capacities as well as inhibitory activities against α-glucosidase, α-amylase and protein glycation caused by its enrichment in phenolics, including mainly ellagic acid, kaempferol and their derivatives. Nevertheless, few in vivo studies on antidiabetic activities of these phenolics were conducted. The present study investigated hypoglycemic effects with normal and diabetic rats being administrated orally without or with ECE at 200 and 800 mg/kg for 15 days. In normal rats, no significant differences were exhibited after ECE administration in body weight, fasting blood glucose level, levels of cholesterol, triglyceride, LDL and AST in serum, organ indexes, and levels of GSH and MDA in organs. In diabetic rats, the fasting blood glucose level, indexes of heart and liver, and levels of cholesterol and triglyceride in serum and MDA in heart tissue were significantly decreased. Moreover, HDL levels in serum and SOD activities in the four organs of diabetic rats were significantly improved after ECE administration at 800 mg/kg. Thus, in addition to inhibiting α-glucosidase, α-amylase and protein glycation reported previously, oak cups might contain novel dietary phytonutrients in preventing abnormal changes in blood glucose and lipid profile and attenuating oxidant stress in vivo. The results also implied that it is ellagic acid, kaempferol and their derivatives enriched in ECE that might play vital roles in managing type 1 as well as type 2 diabetes

    Plasma spatial distribution manipulation and electrical property enhancement through plasma coupling effect

    No full text
    Plasma pattern transition in a symmetric hybrid structure cavity device at micrometer scale is researched through microplasma interaction in intervening microchannel between adjacent cavities while manipulating electric field strength. Plasma distribution reconfiguration in central (objective) cavity is observed when sidearm (donor) cavities are ignited. As long as coupling effect occurred by modulating the electric field strength in the sidearm cavities, stable plasma pattern transition in objective cavity is obtained, exhibiting plasma pattern split from one circular spot (initial pattern) to two small circular spots (transited pattern), along with plasma peak emission intensity displacement over 100 μm to its equilibrium position. The shape of transited plasma patterns are depending on the coupling effect from sidearm cavities. The two circular spots unsymmetrically distributed if either donor cavity is ignited, and the ratio of average emission intensity between the two plasma spots is over 30%, however, which is less than 4% if coupling symmetrically occurred. The electrical and optical properties of central microplasma are also modulated, that the breakthrough voltage is decreased by 22% and emission intensity is improved by ∼30%, by means of plasma coupling. The microplasma pattern formation at micrometre scale and manipulation of the electrical properties in microscale cavity implies significant value in the application of plasma transistor and signal processing
    corecore