45 research outputs found

    Boric Acid Cross-linked 3D Polyvinyl Alcohol Gel Beads by NaOH-Titration Method as a Suitable Biomass Immobilization Matrix

    Get PDF
    Granule-base immobilization of biomass is a potential method for a decent quality granular sludge cultivation. In this study, 3D polyvinyl alcohol (PVA) gel beads were chemically cross-linked via a simple NaOH-titration method. The PVA gel beads’ porous morphology was characterized using scanning electron microscope (SEM) and Brunauer–Emmette–Teller (BET), and their mechanical properties were evaluated by swelling rate and compressive stress tests. When cross-linking time was 10 min, high quality gel beads (P10) were synthesized, which demonstrated a homogeneous porous structure, good swelling rate, and high compressive strength. A mechanism for synthesis of the gel beads was proposed based on the results of Fourier transform infrared (FTIR) and X-ray diffractometer (XRD) analysis. Briefly, the intermolecular hydrogen bonds of PVA were firstly broken by NaOH to generate active bond of O–Na, which easily reacted with B(OH)4 − to produce the PVA-boric acid gel beads. P10 showed excellent biocompatibility for anaerobic ammonia oxidation (anammox) biomass’ immobilization. After incubation for three months, well granule-base immobilized sludge on P10 was developed in up-flow reactor. The sludge had high abundance of anammox biomass and was in balance with other functional bacteria. This work provides a simple method for the rapid preparation of 3D PVA gel beads and verifies their potential in granule-base immobilization of biomass.</p

    Overexpression of CX3CR1 in Adipose-Derived Stem Cells Promotes Cell Migration and Functional Recovery After Experimental Intracerebral Hemorrhage

    Get PDF
    Stem cell therapy has emerged as a new promising therapeutic strategy for intracerebral hemorrhage (ICH). However, the efficiency of stem cell therapy is partially limited by low retention and engraftment of the delivered cells. Therefore, it’s necessary to improve the migration ability of stem cells to the injured area in order to save the costs and duration of cell preparation. This study aimed to investigate whether overexpression of CX3CR1, the specific receptor of chemokine fractalkine (FKN), in adipose-derived stem cells (ADSCs) can stimulate the cell migration to the injured area in the brain, improve functional recovery and protect against cell death following experimental ICH. ADSCs were isolated from subcutaneous adipose tissues of rats. ICH was induced by means of an injection of collagenase type VII. ELISA showed that the expression levels of fractalkine/FKN were increased at early time points, with a peak at day 3 after ICH. And it was found that different passages of ADSCs could express the chemokine receptor CX3CR1. Besides, the chemotactic movements of ADSCs toward fractalkine have been verified by transwell migration assay. ADSCs overexpressing CX3CR1 were established through lentivirus transfection. We found that after overexpression of CX3CR1 receptor, the migration ability of ADSCs was increased both in vitro and in vivo. In addition, reduced cell death and improved sensory and motor functions were seen in the mice ICH model. Thus, ADSCs overexpression CX3CR1 might be taken as a promising therapeutic strategy for the treatment of ICH

    Dual-Enhanced Sparse Decomposition for Wind Turbine Gearbox Fault Diagnosis

    No full text

    Sequence variations of phase-separating proteins and resources for studying biomolecular condensates

    No full text
    Phase separation (PS) is an important mechanism underlying the formation of biomolecular condensates. Physiological condensates are associated with numerous biological processes, such as transcription, immunity, signaling, and synaptic transmission. Changes in particular amino acids or segments can disturb the protein’s phase behavior and interactions with other biomolecules in condensates. It is thus presumed that variations in the phase-separating-prone domains can significantly impact the properties and functions of condensates. The dysfunction of condensates contributes to a number of pathological processes. Pharmacological perturbation of these condensates is proposed as a promising way to restore physiological states. In this review, we characterize the variations observed in PS proteins that lead to aberrant biomolecular compartmentalization. We also showcase recent advancements in bioinformatics of membraneless organelles (MLOs), focusing on available databases useful for screening PS proteins and describing endogenous condensates, guiding researchers to seek the underlying pathogenic mechanisms of biomolecular condensates

    The significance of Th1,Th2,Th17and treg cells in the prediction and evaluation of ulcerative colitis

    No full text
    Objective This study aimed to investigate clinical significance of Th1, Th2, Th17 and Tregs proportions in predicting and evaluating UC. Methods A total of 101 UC patients diagnosed by the Department of Gastroenterology of the Shanxi Provincial People’s Hospital were recruited. This is a retrospective study. The proportions of Th1, Th2, Th17 and Tregs in the peripheral blood were detected by flow cytometry. Results The proportions of Th1, Th2 and Th17 cell in UC patients were higher than healthy controls ( p 0.900 in predicting UC ( p < 0.001), with the cut off values being 15.25%, 4.885 and 0.425, respectively. In addition, Th1, Th17, Treg, Th17/Treg, Th2/Treg, Th1/Treg and Th17/Treg were statistically significant among the mild to severe group ( p < 0.05). The percentage of Treg cells was negatively correlated with Mayo Score, while the percentages of Th17 cell, Th17/Treg, Th1/Treg, Th2/Treg were positively correlated with Mayo score ( p < 0.05). Notably, Th17/Treg was closely related to Mayo score (r = 0.513, p < 0.001). Conclusions The dysregulation of Th1, Th2, Th17 and Tregs is a significant phenomena of immune disorder in UC, and these auxiliary indicators correlate with increased disease severity. The analysis of Th1, Th2, Th17 and Tregs possesses certain clinical significance in the prediction and evaluation of UC

    A New Magnetic Target Localization Method Based on Two-Point Magnetic Gradient Tensor

    No full text
    The existing magnetic target localization methods are greatly affected by the geomagnetic field and exist approximation errors. In this paper, a two-point magnetic gradient tensor localization model is established by using the spatial relation between the magnetic target and the observation points derived from magnetic gradient tensor and tensor invariants. Based on the model, the equations relating to the position vector of magnetic target are constructed. Solving the equations, a new magnetic target localization method using only a two-point magnetic gradient tensor and no approximation errors is achieved. To accurately evaluate the localization accuracy of the method, a circular trajectory that varies in all three directions is proposed. Simulation results show that the proposed method is almost error-free in the absence of noise. After adding noise, the maximum relative error percentage is reduced by 28.4% and 2.21% compared with the single-point method and the other two-point method, respectively. Furthermore, the proposed method is not affected by the variation in the distance between two observation points. At a detection distance of 20 m, the maximum localization error is 1.86 m. In addition, the experiments also verify that the new method can avoid the influence of the geomagnetic field and the variation in the distance, and achieve high localization accuracy. The average relative error percentage in the y-direction is as low as 3.78%

    Nonconvex Sparse Regularization and Convex Optimization for Bearing Fault Diagnosis

    No full text

    Data from: Effects of nitrogen addition and mowing on rodent damage in an Inner Mongolian steppe

    No full text
    Rodent damage is a serious threat to sustainable management of grassland. The effects of nitrogen (N) deposition and grassland management on rodent damage have been scarcely studied. Here, we reported the effects of two years of N addition and mowing on burrow density and damage area of Citellus dauricus in a semi-arid steppe in Inner Mongolia. N addition significantly aggravated, while mowing alleviated rodent damage in the grassland under study. Burrow density and damage area increased 2.8- and 4.7-fold, in N addition plots compared to the ambient N addition treatment, respectively. Conversely, mowing decreased burrow density and damage area by 75.9% and 14.5%, respectively, compared to no mowing plots.. Observed changes in rodent damage were mainly due to variations in plant community cover, height, and aboveground net primary productivity. Our findings demonstrate that N addition and mowing can affect the rodent density and activity in grassland, suggesting that the effects of a changing atmospheric composition and land use on rodent damage must be considered in order to achieve better grassland management
    corecore