1,488 research outputs found

    Free Vibration Analysis Of The Moderately Thick Laminated Composite Rectangular Plate On Two-Parameter Elastic Foundation With Elastic Boundary Conditions

    Get PDF
    An improved Fourier series method is presented for the free vibration analysis of the moderately thick laminated composite rectangular plate with general elastic supports and point supports resting on an elastic foundation. The approach is based on the first order shear deformation theory and foundation effect using two-parameter Pasternak foundation model. The displacement and rotation functions are generally sought, regardless of boundary conditions, as Fourier series and supplementary functions. All the series expansion coefficients are determined using the Rayleigh-Ritz technique. The excellent accuracy of the current results is validated by comparing them with existing results

    Gene transcription analysis during interaction between potato and Ralstonia solanacearum

    Get PDF
    Bacterial wilt (BW) caused by Ralstonia solanacearum (Rs) is an important quarantine disease that spreads worldwide and infects hundreds of plant species. The BW defense response of potato is a complicated continuous process, which involves transcription of a battery of genes. The molecular mechanisms of potato-Rs interactions are poorly understood. In this study, we combined suppression subtractive hybridization and macroarray hybridization to identify genes that are differentially expressed during the incompatible interaction between Rs and potato. In total, 302 differentially expressed genes were identified and classified into 12 groups according to their putative biological functions. Of 302 genes, 81 were considered as Rs resistance-related genes based on the homology to genes of known function, and they have putative roles in pathogen recognition, signal transduction, transcription factor functioning, hypersensitive response, systemic acquired resistance, and cell rescue and protection. Additionally, 50 out of 302 genes had no match or low similarity in the NCBI databases, and they may represent novel genes. Of seven interesting genes analyzed via RNA gel blot and semi-quantitative RT-PCR, six were induced, one was suppressed, and all had different transcription patterns. The results demonstrate that the response of potato against Rs is rapid and involves the induction of numerous various genes. The genes identified in this study add to our knowledge of potato resistance to Rs

    Accelerated cellular senescence in solid tumor therapy

    No full text
    Accelerated cellular senescence (ACS) is an emerging concept that implicates sustained, telomere-independent cell cycle arrest of neoplastic cells in response to chemotherapeutic agents, ionizing radiation, oxidative stress, or the presence of selective oncogenic stimuli. Recent evidence suggests that a subset of tumor cells induced in a state of reversible ACS can escape cell cycle arrest and resume proliferation accounting for cancer progression. The purpose of this review is to describe our current understanding of ACS including signaling pathways of senescence escape, role of senescence biomarkers, and rationale for senescence-based therapy. This article is part of a Special Issue entitled “Apoptosis: Four Decades Later”

    Two charged strangeonium-like structures observable in the Y(2175)ϕ(1020)π+πY(2175) \to \phi(1020)\pi^{+} \pi^{-} process

    Full text link
    Via the Initial Single Pion Emission (ISPE) mechanism, we study the ϕ(1020)π+\phi(1020)\pi^{+} invariant mass spectrum distribution of Y(2175)ϕ(1020)π+πY(2175) \to \phi(1020)\pi^{+} \pi^{-}. Our calculation indicates there exist a sharp peak structure (Zs1+Z_{s1}^+) close to the KKˉK\bar{K}^\ast threshold and a broad structure (Zs2+Z_{s2}^+) near the KKˉK^\ast\bar{K}^\ast threshold. In addition, we also investigate the ϕ(1680)ϕ(1020)π+π\phi(1680) \to \phi(1020)\pi^{+} \pi^{-} process due to the ISPE mechanism, where a sharp peak around the KKˉK\bar{K}^\ast threshold appears in the ϕ(1020)π+\phi(1020)\pi^{+} invariant mass spectrum distribution. We suggest to carry out the search for these charged strangeonium-like structures in future experiment, especially Belle II, Super-B and BESIII.Comment: 7 pages, 5 figures. Accepted by Eur. Phys. J.

    Local disorder and optical properties in V-shaped quantum wires : towards one-dimensional exciton systems

    Full text link
    The exciton localization is studied in GaAs/GaAlAs V-shaped quantum wires (QWRs) by high spatial resolution spectroscopy. Scanning optical imaging of different generations of samples shows that the localization length has been enhanced as the growth techniques were improved. In the best samples, excitons are delocalized in islands of length of the order of 1 micron, and form a continuum of 1D states in each of them, as evidenced by the sqrt(T) dependence of the radiative lifetime. On the opposite, in the previous generation of QWRs, the localization length is typically 50 nm and the QWR behaves as a collection of quantum boxes. These localization properties are compared to structural properties and related to the progresses of the growth techniques. The presence of residual disorder is evidenced in the best samples and explained by the separation of electrons and holes due to the large in-built piezo-electric field present in the structure.Comment: 8 figure

    Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion towards all normal dispersion

    Full text link
    Soliton operation and soliton wavelength tuning of erbium-doped fiber lasers mode locked with atomic layer graphene was experimentally investigated under various cavity dispersion conditions. It was shown that not only wide range soliton wavelength tuning but also soltion pulse width variation could be obtained in the fiber lasers. Our results show that the graphene mode locked erbium-doped fiber lasers provide a compact, user friendly and low cost wavelength tunable ultrahsort pulse source

    Elastic scattering and breakup reactions of the proton drip-line nucleus 8 B on 208 Pb at 238 MeV

    Get PDF
    Elastic scattering and breakup angular distributions of the weakly bound radioactive nucleus 8 B on a 208Pb target at an incident energy of 238 MeV, which corresponds to four times the Coulomb barrier, have been measured at the HIRFL-RIBLL facility (Institute of Modern Physics, Lanzhou). The data have been analyzed using the optical model and the continuum discretized coupled channels (CDCC) formalism. The measured and calculated elastic scattering angular distributions do not show any significant Coulomb rainbow suppression. The angular distribution for the breakup reaction was measured for the first time at this energy. The angular distribution of the 7 Be fragments could be reproduced considering elastic plus nonelastic breakup contributions, with the former evaluated with the CDCC calculations and the latter with the model of Ichimura, Austern, and Vincent [Phys. Rev. C 32, 431 (1985)]. The comparison of the breakup cross section of 8 B with that of 11Be suggests that the Coulomb and centrifugal barriers encountered by the valence proton may suppress the breakup cross section.Fundación Nacional Programa clave de I + D de China (Subvención No. 2018YFA0404403)Fundación Nacional de Ciencias Naturales de China (Subvenciones No. 11947203, No. 11775013, No. 11575256 y No. U1632138)Youth Innovation Promotion Association CAS de China (No. 2020411)Fundación de Investigación de São Paulo (FAPESP) (Becas No. 2016/17612-7 y No. 2018/04965-4)Ministerio español de Ciencia, Innovación y Universidades (incluyendo FEDER fondos) bajo el proyecto FIS2017-88410-PUnión Europea programa de investigación e innovación Horizonte 2020 de la Unión Acuerdo de Subvención No. 654002

    Crotonases: Nature’s exceedingly convertible catalysts

    Get PDF
    YesThe crotonases comprise a widely distributed enzyme superfamily that has multiple roles in both primary and secondary metabolism. Many crotonases employ oxyanion hole-mediated stabilization of intermediates to catalyze the reaction of coenzyme A (CoA) thioester substrates (e.g., malonyl-CoA, α,β-unsaturated CoA esters) both with nucleophiles and, in the case of enolate intermediates, with varied electrophiles. Reactions of crotonases that proceed via a stabilized oxyanion intermediate include the hydrolysis of substrates including proteins, as well as hydration, isomerization, nucleophilic aromatic substitution, Claisen-type, and cofactor-independent oxidation reactions. The crotonases have a conserved fold formed from a central β-sheet core surrounded by α-helices, which typically oligomerizes to form a trimer or dimer of trimers. The presence of a common structural platform and mechanisms involving intermediates with diverse reactivity implies that crotonases have considerable potential for biocatalysis and synthetic biology, as supported by pioneering protein engineering studies on them. In this Perspective, we give an overview of crotonase diversity and structural biology and then illustrate the scope of crotonase catalysis and potential for biocatalysis.Biotechnology and Biological Sciences Research Council, the Medical Research Council, and the Wellcome Trus

    Scattering of the halo nucleus 11Be from a lead target at 3.5 times the Coulomb barrier energy

    Get PDF
    Angular distributions of quasielastic scattering and breakup of the neutron-rich halo nucleus 11Be on a 208Pb target at an incident energy of 140 MeV (about 3.5 times the Coulomb barrier) were measured at HIRFL-RIBLL. A strong suppression of the Coulomb nuclear interference peak is observed in the measured quasielastic scattering angular distribution. The result demonstrates for the first time the persistence of the strong breakup coupling effect reported so far for reaction systems involving neutron-halo nuclei at this relatively high incident energy. The measured quasielastic scattering cross sections are satisfactorily reproduced by continuum discretized coupled channel (CDCC) calculations as well as by the XCDCC calculations where the deformation of the 10Be core is taken into account. The angular and energy distributions of the 10Be fragments could also be well reproduced considering elastic breakup (CDCC and XCDCC) plus nonelastic breakup contributions, with the latter evaluated with the model by Ichimura, Austern and Vincent [1]. The comparison of the 10Be energy distributions with simple kinematical estimates evidence the presence of a significant post-acceleration effect which, in the (X)CDCC frameworks, is accounted for by continuum-continuum couplings.National Key Research and Development Program of China (Grant No. 2018YFA0404403)National Natural Science Foundation of China (Grant No. 11775013, No. 11947203, No. 11575256, and No. U1632138)Youth Innovation Promotion Association CAS (No. 2020411)Ministerio de Ciencia, Innovación y Universidades FIS2017-88410-PEuropean Union’s Horizon 2020 (Grant Agreement No. 654002
    corecore