3,413 research outputs found

    Mahi-mahi (Coryphaena hippurus) life development: morphological, physiological, behavioral and molecular phenotypes.

    Get PDF
    BackgroundMahi-mahi (Coryphaena hippurus) is a commercially and ecologically important fish species that is widely distributed in tropical and subtropical waters. Biological attributes and reproductive capacities of mahi-mahi make it a tractable model for experimental studies. In this study, life development of cultured mahi-mahi from the zygote stage to adult has been described.ResultsA comprehensive developmental table has been created reporting development as primarily detailed observations of morphology. Additionally, physiological, behavioral, and molecular landmarks have been described to significantly contribute in the understanding of mahi life development.ConclusionRemarkably, despite the vast difference in adult size, many developmental landmarks of mahi map quite closely onto the development and growth of Zebrafish and other warm-water, active Teleost fishes

    Head Removal Enhances Planarian Electrotaxis

    Get PDF
    Certain animal species utilize electric fields for communication, hunting and spatial orientation. Freshwater planarians move toward the cathode in a static electric field (cathodic electrotaxis). This planarian behavior was first described by Raymond Pearl more than a century ago. However, planarian electrotaxis has received little attention since, and the underlying mechanisms and evolutionary significance remain unknown. To close this knowledge gap, we developed an apparatus and scoring metrics for automated quantitative and mechanistic studies of planarian behavior upon exposure to a static electric field. Using this automated setup, we characterized electrotaxis in the planarian Dugesia japonica and found that this species responds to voltage instead of current, in contrast to results from previous studies using other planarian species. Surprisingly, we found differences in electrotaxis ability between small (shorter) and large (longer) planarians. To determine the cause of these differences, we took advantage of the regenerative abilities of planarians and compared electrotaxis in head, tail and trunk fragments of various lengths. We found that tail and trunk fragments electrotaxed, whereas head fragments did not, regardless of size. Based on these data, we hypothesized that signals from the head may interfere with electrotaxis when the head area/body area reached a critical threshold. In support of this hypothesis, we found that (1) smaller intact planarians that cannot electrotax have a relatively larger head-to-body-ratio than large planarians that can electrotax, and (2) the electrotaxis behavior of cut head fragments was negatively correlated with the head-to-body ratio of the fragments. Moreover, we could restore cathodic electrotaxis in head fragments via decapitation, directly demonstrating inhibition of electrotaxis by the head

    Fossil slabs attached to unsubducted fragments of the Farallon plate

    Get PDF
    As the Pacific–Farallon spreading center approached North America, the Farallon plate fragmented into a number of small plates. Some of the microplate fragments ceased subducting before the spreading center reached the trench. Most tectonic models have assumed that the subducting oceanic slab detached from these microplates close to the trench, but recent seismic tomography studies have revealed a high-velocity anomaly beneath Baja California that appears to be a fossil slab still attached to the Guadalupe and Magdalena microplates. Here, using surface wave tomography, we establish the lateral extent of this fossil slab and show that it is correlated with the distribution of high-Mg andesites thought to derive from partial melting of the subducted oceanic crust. We also reinterpret the high seismic velocity anomaly beneath the southern central valley of California as another fossil slab extending to a depth of 200 km or more that is attached to the former Monterey microplate. The existence of these fossil slabs may force a reexamination of models of the tectonic evolution of western North America over the last 30 My

    Water Availability for Cannabis in Northern California: Intersections of Climate, Policy, and Public Discourse

    Get PDF
    Availability of water for irrigated crops is driven by climate and policy, as moderated by public priorities and opinions. We explore how climate and water policy interact to influence water availability for cannabis (Cannabis sativa), a newly regulated crop in California, as well as how public discourse frames these interactions. Grower access to surface water covaries with precipitation frequency and oscillates consistently in an energetic 11–17 year wet-dry cycle. Assessing contemporary cannabis water policies against historic streamflow data showed that legal surface water access was most reliable for cannabis growers with small water rights (m3) and limited during relatively dry years. Climate variability either facilitates or limits water access in cycles of 10–15 years—rendering cultivators with larger water rights vulnerable to periods of drought. However, news media coverage excludes growers’ perspectives and rarely mentions climate and weather, while public debate over growers’ irrigation water use presumes illegal diversion. This complicates efforts to improve growers’ legal water access, which are further challenged by climate. To promote a socially, politically, and environmentally viable cannabis industry, water policy should better represent growers’ voices and explicitly address stakeholder controversies as it adapts to this new and legal agricultural water user

    Role of mTOR through Autophagy in Esophageal Cancer Stemness

    Get PDF
    SIMPLE SUMMARY: Esophageal cancer (EC) is a highly aggressive disease with a poor prognosis, which seems related to esophageal cancer stem-like cells (CSCs), which reside in a hypoxic niche. We demonstrated, using EC cell lines and patient-derived organoids, that the hypoxia-responding mammalian target of rapamycin (mTOR) can suppress autophagy and stemness of esophageal CSCs. In addition, mTOR inhibitor Torin-1-mediated CSCs upregulation was significantly reduced in cells treated with autophagy inhibitor, hydroxychloroquine (HCQ). Collectively, our data suggest that autophagy may play a crucial role in mTOR-mediated CSCs repression. The mTOR pathway could be a novel therapeutic target for putative esophageal CSCs. ABSTRACT: Esophageal cancer (EC) is a highly aggressive disease with a poor prognosis. Therapy resistance and early recurrences are major obstacles in reaching a better outcome. Esophageal cancer stem-like cells (CSCs) seem tightly related with chemoradiation resistance, initiating new tumors and metastases. Several oncogenic pathways seem to be involved in the regulation of esophageal CSCs and might harbor novel therapeutic targets to eliminate CSCs. Previously, we identified a subpopulation of EC cells that express high levels of CD44 and low levels of CD24 (CD44(+)/CD24(−)), show CSC characteristics and reside in hypoxic niches. Here, we aim to clarify the role of the hypoxia-responding mammalian target of the rapamycin (mTOR) pathway in esophageal CSCs. We showed that under a low-oxygen culture condition and nutrient deprivation, the CD44(+)/CD24(−) population is enriched. Since both low oxygen and nutrient deprivation may inhibit the mTOR pathway, we next chemically inhibited the mTOR pathway using Torin-1. Torin-1 upregulated SOX2 resulted in an enrichment of the CD44(+)/CD24(−) population and increased sphere formation potential. In contrast, stimulation of the mTOR pathway using MHY1485 induced the opposite effects. In addition, Torin-1 increased autophagic activity, while MHY1485 suppressed autophagy. Torin-1-mediated CSCs upregulation was significantly reduced in cells treated with autophagy inhibitor, hydroxychloroquine (HCQ). Finally, a clearly defined CD44(+)/CD24(−) CSC population was detected in EC patients-derived organoids (ec-PDOs) and here, MHY1485 also reduced this population. These data suggest that autophagy may play a crucial role in mTOR-mediated CSCs repression. Stimulation of the mTOR pathway might aid in the elimination of putative esophageal CSCs

    Semen quality in relation to biomarkers of pesticide exposure.

    Get PDF
    We previously reported reduced sperm concentration and motility in fertile men in a U.S. agrarian area (Columbia, MO) relative to men from U.S. urban centers (Minneapolis, MN; Los Angeles, CA; New York, NY). In the present study we address the hypothesis that pesticides currently used in agriculture in the Midwest contributed to these differences in semen quality. We selected men in whom all semen parameters (concentration, percentage sperm with normal morphology, and percentage motile sperm) were low (cases) and men in whom all semen parameters were within normal limits (controls) within Missouri and Minnesota (sample sizes of 50 and 36, respectively) and measured metabolites of eight current-use pesticides in urine samples provided at the time of semen collection. All pesticide analyses were conducted blind with respect to center and case-control status. Pesticide metabolite levels were elevated in Missouri cases, compared with controls, for the herbicides alachlor and atrazine and for the insecticide diazinon [2-isopropoxy-4-methyl-pyrimidinol (IMPY)]; for Wilcoxon rank test, p = 0.0007, 0.012, and 0.0004 for alachlor, atrazine, and IMPY, respectively. Men from Missouri with high levels of alachlor or IMPY were significantly more likely to be cases than were men with low levels [odds ratios (ORs) = 30.0 and 16.7 for alachlor and IMPY, respectively], as were men with atrazine levels higher than the limit of detection (OR = 11.3). The herbicides 2,4-D (2,4-dichlorophenoxyacetic acid) and metolachlor were also associated with poor semen quality in some analyses, whereas acetochlor levels were lower in cases than in controls (p = 0.04). No significant associations were seen for any pesticides within Minnesota, where levels of agricultural pesticides were low, or for the insect repellent DEET (N,N-diethyl-m-toluamide) or the malathion metabolite malathion dicarboxylic acid. These associations between current-use pesticides and reduced semen quality suggest that agricultural chemicals may have contributed to the reduction in semen quality in fertile men from mid-Missouri we reported previously

    Transplanting cells from old but not young donors causes physical dysfunction in older recipients.

    Get PDF
    Adipose-derived mesenchymal stem cell (ADSC)-based regenerative therapies have shown potential for use in many chronic diseases. Aging diminishes stem cell regenerative potential, yet it is unknown whether stem cells from aged donors cause adverse effects in recipients. ADSCs can be obtained using minimally invasive approaches and possess low immunogenicity. Nevertheless, we found that transplanting ADSCs from old donors, but not those from young donors, induces physical dysfunction in older recipient mice. Using single-cell transcriptomic analysis, we identified a naturally occurring senescent cell-like population in ADSCs primarily from old donors that resembles in vitro-generated senescent cells with regard to a number of key pathways. Our study reveals a previously unrecognized health concern due to ADSCs from old donors and lays the foundation for a new avenue of research to devise interventions to reduce harmful effects of ADSCs from old donors

    Reduction of Murine Colon Tumorigenesis Driven by Enterotoxigenic Bacteroides fragilis Using Cefoxitin Treatment

    Get PDF
    BACKGROUND: Chronic inflammation and composition of the colon microbiota have been associated with colorectal cancer in humans. The human commensal enterotoxigenic Bacteroides fragilis (ETBF) is linked to both inflammatory bowel disease and colorectal cancer and, in our murine model, causes interleukin 17A (IL-17A)-dependent colon tumors. In these studies, we hypothesized that persistent colonization by ETBF is required for tumorigenesis. METHODS: We established a method for clearing ETBF in mice, using the antibiotic cefoxitin. Multiple intestinal neoplasia mice were colonized with ETBF for the experiment duration or were cleared of infection after 5 or 14 days. Gross tumors and/or microadenomas were then evaluated. In parallel, IL-17A expression was evaluated in wild-type littermates. RESULTS: Cefoxitin treatment resulted in complete and durable clearance of ETBF colonization. We observed a stepwise increase in median colon tumor numbers as the duration of ETBF colonization increased before cefoxitin treatment. ETBF eradication also significantly decreased mucosal IL-17A expression. CONCLUSIONS: The timing of ETBF clearance profoundly influences colon adenoma formation, defining a period during which the colon is susceptible to IL-17A-dependent tumorigenesis in this murine model. This model system can be used to study the microbiota-dependent and molecular mechanisms contributing to IL-17A-dependent colon tumor initiation

    Adverse prognostic and predictive significance of low DNA-dependent protein kinase catalytic subunit (DNA-PKcs) expression in early-stage breast cancers

    Get PDF
    Background: DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a serine threonine kinase belonging to the PIKK family (phosphoinositide 3-kinase-like-family of protein kinase), is a critical component of the non-homologous end joining (NHEJ) pathway required for the repair of DNA double strand breaks. DNA-PKcs may be involved in breast cancer pathogenesis. Methods: We evaluated clinicopathological significance of DNA-PKcs protein expression in 1161 tumours and DNA-PKcs mRNA expression in 1950 tumours. We correlated DNA-PKcs to other markers of aggressive phenotypes, DNA repair, apoptosis and cell cycle regulation. Results: Low DNA-PKcs protein expression was associated with higher tumour grade, higher mitotic index, tumour de-differentiation and tumour type (ps<0.05). Absence of BRCA1, low XRCC1/SMUG1/APE1/Polβ were also more likely in low DNA-PKcs expressing tumours (ps<0.05). Low DNA-PKcs protein expression was significantly associated with worse breast cancer specific survival (BCCS) in univariate and multivariate analysis (ps<0.01). At the mRNA level, low DNA-PKcs was associated with PAM50.Her2 and PAM50.LumA molecular phenotypes (ps<0.01) and poor BCSS. In patients with ER positive tumours who received endocrine therapy, low DNA-PKcs (protein and mRNA) was associated with poor survival. In ER negative patients, low DNA-PKcs mRNA remains significantly associated with adverse outcome. Conclusions: Our study suggests that low DNA-PKcs expression may have prognostic and predictive significance in breast cancers
    corecore