21 research outputs found

    Nationwide Perspectives and Experiences of Gay and Bisexual Male 4-H Alums

    Get PDF
    While 4-H espouses to be inclusive of all, the reality is often that the bulk of membership within 4-H community clubs is viewed with a heteronormative lens of participation. Recognizing that existing studies of gay and bisexual individuals who grew up in 4-H do not exist, this study is novel and critical to begin to fill the research gap and provide evidence of the experiences of gay male youth in 4-H. A total of 165 gay and bisexual men who are 4-H alumni shared what about 4-H helped them feel included, that they belonged, and what about the experience caused them to feel excluded. Respondents also offer advice to help 4-H leaders create welcoming and inclusive environments where LGBTQ+ children may thrive. Furthermore, based on the findings, recommendations for the Cooperative Extension System and future studies are offered

    ESimCSE Unsupervised Contrastive Learning Jointly with UDA Semi-Supervised Learning for Large Label System Text Classification Mode

    Full text link
    The challenges faced by text classification with large tag systems in natural language processing tasks include multiple tag systems, uneven data distribution, and high noise. To address these problems, the ESimCSE unsupervised comparative learning and UDA semi-supervised comparative learning models are combined through the use of joint training techniques in the models.The ESimCSE model efficiently learns text vector representations using unlabeled data to achieve better classification results, while UDA is trained using unlabeled data through semi-supervised learning methods to improve the prediction performance of the models and stability, and further improve the generalization ability of the model. In addition, adversarial training techniques FGM and PGD are used in the model training process to improve the robustness and reliability of the model. The experimental results show that there is an 8% and 10% accuracy improvement relative to Baseline on the public dataset Ruesters as well as on the operational dataset, respectively, and a 15% improvement in manual validation accuracy can be achieved on the operational dataset, indicating that the method is effective.Comment: This paper contains 14 pages,4 figures,4 table

    Multidimensional signals and analytic flexibility: Estimating degrees of freedom in human speech analyses

    Get PDF
    Recent empirical studies have highlighted the large degree of analytic flexibility in data analysis which can lead to substantially different conclusions based on the same data set. Thus, researchers have expressed their concerns that these researcher degrees of freedom might facilitate bias and can lead to claims that do not stand the test of time. Even greater flexibility is to be expected in fields in which the primary data lend themselves to a variety of possible operationalizations. The multidimensional, temporally extended nature of speech constitutes an ideal testing ground for assessing the variability in analytic approaches, which derives not only from aspects of statistical modeling, but also from decisions regarding the quantification of the measured behavior. In the present study, we gave the same speech production data set to 46 teams of researchers and asked them to answer the same research question, resulting insubstantial variability in reported effect sizes and their interpretation. Using Bayesian meta-analytic tools, we further find little to no evidence that the observed variability can be explained by analysts’ prior beliefs, expertise or the perceived quality of their analyses. In light of this idiosyncratic variability, we recommend that researchers more transparently share details of their analysis, strengthen the link between theoretical construct and quantitative system and calibrate their (un)certainty in their conclusions

    Study on Static and Fatigue Behaviors of Steel-UHPFRC Composite Deck Structure

    No full text
    Ultra-high-performance fiber-reinforced cementitious composite (UHPFRC) is used in orthotropic steel deck (OSD) to form a lightweight composite deck structure (LWCD), which is expected to solve the problems of fatigue cracking of traditional steel deck and pavement damage. This paper aims to study the influence of key design parameters on longitudinal bending and transverse fatigue performance, as well as the ultimate bearing capacity calculation theory of the LWCD. A local finite-element (FE) model was built to evaluate the vehicle-induced stress ranges of six typical fatigue-prone details. In total, eight negative bending tests on steel-UHPFRC composite beams and one fatigue test on a steel-UHPFRC composite plate were conducted to investigate the longitudinal bending performance and the transverse flexural fatigue behavior of the LWCD, respectively. The results show that adding a 60-mm UHPFRC layer can significantly reduce the stress amplitude of six typical fatigue details by 44.8% to 90%. The failure mode of the longitudinal bending tests is the U-rib buckle and all UHPFRC layers exhibit multiple cracking behaviors when the specimens failed. The longitudinal cracking stresses of the specimens are between 20.0 MPa to 27.3 MPa. The reinforcement ratio and cover thickness have a great influence on the cracking stress. While the ultimate bearing capacity of specimens with different parameters has little difference. The calculation method of the ultimate bearing capacity of a steel-UHPFRC composite structure is proposed. When the strain at the bottom of the u-rib is taken as 1.2 times the design yield strain, the calculated results are in good agreement with the experimental results. No fatigue failure was observed after 66.12 million fatigue cycles under the design load, highlighting the favorable fatigue resistance of the proposed LWCD

    Experimental forward and reverse in situ combustion gasification of lignite with production of hydrogen-rich syngas

    Get PDF
    Abstract This research focused on the feasibility of applying the forward and reverse combustion approach to the in situ gasification of lignite with the production of hydrogen-rich syngas (H2 and CO). The so-called forward combustion gasification (FCG) and reverse combustion gasification (RCG) approach in which oxygen and steam are simultaneously fed to the simulated system of underground coal gasification (UCG) was studied. A simulated system of UCG was designed and established. The underground conditions of the coal seam and strata were simulated in the system. The combustion gasification of lignite has been carried out experimentally for almost 6.5 days. The average effective content (H2 + CO) of syngas during the FCG phase was 62.31 % and the maximum content was 70.92 %. For the RCG phase the corresponding figures are 61.33 % and 67.91 %. Thus, the feasibility of using RCG way for UCG has been demonstrated. The temperature profiles have been provided by using of 85 thermocouples during the model experiment, which portrayed the several nephograms of thermal data in the gasifier were of significance for the prospective gasification processes

    Investigation of the Effect of the Degree of Processing of Radix Rehmanniae Preparata (Shu Dihuang) on Shu Dihuangtan Carbonization Preparation Technology

    No full text
    Carbonization of Radix Rehmanniae Preparata (Shu Dihuangtan) via stir-frying could increase its homeostasis maintaining and antidiarrheal effects. To ensure these pharmacological functions, the quality of the raw material (processed Rehmanniae Radix) must be well controlled. Therefore, we analyzed the effects of different degrees of processing and adjuvants on processed Rehmanniae Radix (Shu Dihuang) by High Performance Liquid Chromatography (HPLC) chromatographic fingerprints, thermal gravimetric analysis and Fourier transform infrared spectroscopy (FTIR). Based on the results from HPLC fingerprints combined with similarity analysis (SA) and hierarchical cluster analysis (HCA) the optimum processing method for Shu Dihuang was five cycles of steaming and polishing, which follows the ancient processing theory. The intensity of thermal weight loss rate peaked near 210.33 ± 4.32 °C or 211.33 ± 2.62 °C, which was an important indicator for the degree of processing of Shu Dihuang. A temperature near 290.89 ± 2.51 °C was the upper limit for carbonizing Shu Dihuangtan. FTIR spectroscopy analysis showed that the overall chemical composition of Shu Dihuangtan was affected by both the degree of processing and adjuvant, which are very important for its quality
    corecore