28 research outputs found
Mortalidade infantil e acesso geográfico ao parto nos municípios brasileiros
OBJETIVO: Analisar o acesso geográfico ao parto hospitalar nos municípios brasileiros. MÉTODOS: Foram analisadas informações de óbitos e nascimentos quanto à sua adequação para o cálculo do coeficiente de mortalidade infantil no período de 2005 a 2007 para os 5.564 municípios brasileiros. O acesso geográfico foi expresso por indicadores de deslocamento, oferta e acesso aos serviços de saúde. A associação entre o acesso geográfico ao parto e o coeficiente de mortalidade infantil em municípios com adequação de suas informações vitais foi avaliada por meio de regressão múltipla. RESULTADOS: Dentre os municípios analisados, 56% apresentaram adequação das informações vitais, correspondendo a 72% da população brasileira. O deslocamento geográfico ao parto mostrou-se inversamente associado ao porte populacional, à renda per capita, e à mortalidade infantil, mesmo controlado por fatores demográficos e socioeconômicos. CONCLUSÕES: Embora tenham sido desenvolvidas estratégias importantes para a melhoria da qualidade do atendimento às gestantes no Brasil, as ações para garantir o acesso igualitário à assistência ao parto ainda são insuficientes. O maior deslocamento intermunicipal para o parto se mostrou como um fator de risco para a mortalidade infantil, aliado à desigualdade de oferta de serviços qualificados e à falta de integração com a atenção básica de saúde
Habitat fragmentation and the future structure of tree assemblages in a fragmented Atlantic forest landscape
The biodiversity value of human-modified landscapes has become a central question in the tropical forest conservation biology, yet the degree to which plant populations and communities are restructured in response to environmental change remains unclear. Here, we address tree species density in a fragmented Atlantic forest landscape to test the hypothesis that tree assemblages inhabiting edge-dominated forest habitats approach typical conditions of early successional systems. Seedlings and adults from 141 tree species were sampled across 39 0.1-ha plots: 19 in small fragments (55 % of all tree species exhibiting higher densities in small fragments than in mature forest, particularly pioneers (>60 % of all species). Seedlings and adults of these proliferating species differed from species exhibiting population declines in terms of wood density and seed size, respectively. Additionally, pioneers were more abundant than shade-tolerant species, as were hardwood species in the case of seedlings. Tree species showing highest population increases consisted largely of long-lived, light-demanding canopy species bearing soft or hardwood and small-to-medium-sized seeds. Tree assemblage structure also differed in terms of forest habitats with small forest fragments supporting few rare species, whereas the most rapidly proliferating species were much more widespread and abundant in fragments. However, 60 % of all adult pioneer species recorded in small fragments were not recorded as seedlings in this habitat type, although both seedling and adult assemblages were dominated by pioneer species. Edge-dominated tree assemblages are likely to experience long-term shifts toward greater dominance of long-lived, pioneer canopy species
Promising self-emulsifying drug delivery system loaded with lycopene from red guava (Psidium guajava L.): in vivo toxicity, biodistribution and cytotoxicity on DU-145 prostate cancer cells
Background
Self-emulsifying drug delivery systems (SEDDSs) have attracted attention because of their effects on solubility and bioavailability of lipophilic compounds. Herein, a SEDDS loaded with lycopene purified from red guava (nanoLPG) was produced. The nanoemulsion was characterized using dynamic light scattering (DLS), zeta potential measurement, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), lycopene content quantification, radical scavenging activity and colloidal stability in cell culture medium. Then, in vivo toxicity and tissue distribution in orally treated mice and cytotoxicity on human prostate carcinoma cells (DU-145) and human peripheral blood mononuclear cells (PBMC) were evaluated.
Results
NanoLPG exhibited physicochemical properties with a size around 200 nm, negative zeta-potential, and spherical morphology. The size, polydispersity index, and zeta potential parameters suffered insignificant alterations during the 12 month storage at 5 °C, which were associated with lycopene stability at 5 °C for 10 months. The nanoemulsion showed partial aggregation in cell culture medium at 37 °C after 24 h. NanoLPG at 0.10 mg/mL exhibited radical scavenging activity equivalent to 0.043 ± 0.002 mg Trolox/mL. The in vivo studies did not reveal any significant changes in clinical, behavioral, hematological, biochemical, and histopathological parameters in mice orally treated with nanoLPG at 10 mg/kg for 28 days. In addition, nanoLPG successfully delivered lycopene to the liver, kidney and prostate in mice, improved its cytotoxicity against DU-145 prostate cancer cells—probably by pathway independent on classical necrosis and apoptosis—and did not affect PBMC viability.
Conclusions
Thus, nanoLPG stands as a promising and biosafe lycopene delivery system for further development of nanotechnology-based health products
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4
While the increasing availability of global databases on ecological communities has advanced our knowledge
of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In
the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of
Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus
crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced
environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian
Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by
2050. This means that unless we take immediate action, we will not be able to establish their current status,
much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly