19 research outputs found
Minimizing Block Incentive Volatility Through Verkle Tree-Based Dynamic Transaction Storage
Transaction fees are a crucial revenue source for miners in public and
consortium blockchains. However, while public blockchains have additional
revenue streams, transaction fees serve as the primary income for miners in
consortium blockchains formed by various financial institutions. These miners
allocate different levels of computing resources to process transactions and
earn corresponding fees. Nonetheless, relying solely on transaction fees can
lead to significant volatility and encourage non-standard mining behaviors,
thereby posing threats to the blockchain's security and integrity. Despite
previous attempts to mitigate the impact of transaction fees on illicit mining
behaviors, a comprehensive solution to this vulnerability is yet to be
established. To address this gap, we introduce a novel approach that leverages
Dynamic Transaction Storage (DTS) strategies to effectively minimize block
incentive volatility. Our solution implements a Verkle tree-based storage
mechanism to reduce bandwidth consumption. Moreover, to configure the DTS
strategies, we evaluate several optimization algorithms and formulate the
challenge as a Vehicle Routing Problem. Our experiments conducted using
historical transactions from Bitcoin and remittance data from the Industrial
and Commercial Bank of China reveal that the strategy focusing on time-based
transaction incorporation priority, while excluding a designated space for
small-fee transactions, as discovered by the gradient-based optimizer
algorithm, proves most effective in reducing volatility. Hence, the DTS
strategy can sustain stable block incentives irrespective of transaction types
or user bidding behavior. Furthermore, the inclusion of higher-fee
transactions, often smaller in size, can alleviate propagation delays and the
occurrence of forks
Sedentism and plant cultivation in northeast China emerged during affluent conditions
The reasons and processes that led hunter-gatherers to transition into a sedentary and agricultural way of life are a fundamental unresolved question of human history. Here we present results of excavations of two single-occupation early Neolithic sites (dated to 7.9 and 7.4 ka) and two high-resolution archaeological surveys in northeast China, which capture the earliest stages of sedentism and millet cultivation in the second oldest center of domestication in the Old World. The transition to sedentism coincided with a significant transition to wetter conditions in north China, at 8.1–7.9 ka. We suggest that these wetter conditions were an empirical precondition that facilitated the complex transitional process to sedentism and eventually millet domestication in north China. Interestingly, sedentism and plant domestication followed different trajectories. The sedentary way of life and cultural norms evolved rapidly, within a few hundred years, we find complex sedentary villages inhabiting the landscape. However, the process of plant domestication, progressed slowly over several millennia. Our earliest evidence for the beginning of the domestication process appear in the context of an already complex sedentary village (late Xinglongwa culture), a half millennia after the onset of cultivation, and even in this phase domesticated plants and animals were rare, suggesting that the transition to domesticated (sensu stricto) plants in affluent areas might have not played a substantial role in the transition to sedentary societies
Asynchronous Wireless Signal Modulation Recognition Based on In-Phase Quadrature Histogram
Automatic modulation recognition is a key technology in the field of signal processing. Conventional recognition methods suffer from low recognition accuracy at low signal-to-noise ratios (SNR), and when the signal frequency is unstable or there is asynchronous sampling, the performance of conventional recognition methods will deteriorate or even fail. To address these challenges, deep learning-based modulation mode recognition technique is investigated in this paper for low-speed asynchronous sampled signals under channel conditions with varying SNR and delay. Firstly, the low-speed asynchronous sampled signals are modeled, and their in-phase quadrature components are used to generate a two-dimensional asynchronous in-phase quadrature histogram. Then, the feature parameters of this 2D image are extracted by radial basis function neural network (RBFNN) to complete the recognition of the modulation mode of the input signal. Finally, the accuracy of the method for seven modulation methods is verified by extensive simulations. The experimental results show that under the channel model of additive white Gaussian noise (AWGN), when the SNR of the input signal with low-speed asynchronous sampling is 6 dB, more than 95% of the average recognition accuracy can be achieved, and the effectiveness and robustness of the proposed scheme are verified by comparative experiments
Failure Mechanism of Rear Drive Shaft in a Modified Pickup Truck
This paper investigates the failure mechanism of the rear drive shaft in a modified pickup truck which had operated for about 3000 km. The investigation included macroscopic and microscopic evaluation to document the morphologies of the fracture surface, measurement of the material composition, metallographic preparation and examination, mechanical testing, and finite element modelling and calculations. The results obtained suggest that rotation-bending fatigue was the primary cause of the drive shaft failure. The crack initiation is located in the root of the machined threads on the drive shaft surface and expanded along the side of the machining line surface. The main cause of fatigue cracks is attributable to a high stress concentration owing to a large unilateral bending impact under overload. Meanwhile, the bidirectional torsional force also produces a higher stress concentration and thus accelerates the fatigue crack to expand radially along the surface. Furthermore, the hardness of the central section of the drive shaft was marginally below standard. This deficiency results in harm to the bearings and other mechanical components, as well as expediting the enlargement of cracks. Finite element analysis revealed significant contact stress between the bearing and drive shaft, with stress levels exceeding the fatigue limit stress of the parent material. This highlights the need for reevaluation of the heat treatment process and vehicle loading quality to enhance the drive shaft’s longevity
Recommended from our members
Sedentism and plant cultivation in northeast China emerged during affluent conditions.
The reasons and processes that led hunter-gatherers to transition into a sedentary and agricultural way of life are a fundamental unresolved question of human history. Here we present results of excavations of two single-occupation early Neolithic sites (dated to 7.9 and 7.4 ka) and two high-resolution archaeological surveys in northeast China, which capture the earliest stages of sedentism and millet cultivation in the second oldest center of domestication in the Old World. The transition to sedentism coincided with a significant transition to wetter conditions in north China, at 8.1-7.9 ka. We suggest that these wetter conditions were an empirical precondition that facilitated the complex transitional process to sedentism and eventually millet domestication in north China. Interestingly, sedentism and plant domestication followed different trajectories. The sedentary way of life and cultural norms evolved rapidly, within a few hundred years, we find complex sedentary villages inhabiting the landscape. However, the process of plant domestication, progressed slowly over several millennia. Our earliest evidence for the beginning of the domestication process appear in the context of an already complex sedentary village (late Xinglongwa culture), a half millennia after the onset of cultivation, and even in this phase domesticated plants and animals were rare, suggesting that the transition to domesticated (sensu stricto) plants in affluent areas might have not played a substantial role in the transition to sedentary societies
CEPC Technical Design Report -- Accelerator
International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s
CEPC Technical Design Report -- Accelerator
International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s
CEPC Technical Design Report -- Accelerator
The Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s
CEPC Technical Design Report -- Accelerator
International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s