31 research outputs found
An empirical study of dynamic triobjective optimisation problems
Dynamic multiobjective optimisation deals with multiobjective problems whose objective functions, search spaces, or constraints are time-varying during the optimisation process. Due to wide presence in real-world applications, dynamic multiobjective problems (DMOPs) have been increasingly studied in recent years. Whilst most studies concentrated on DMOPs with only two objectives, there is little work on more objectives. This paper presents an empirical investigation of evolutionary algorithms for three-objective dynamic problems. Experimental studies show that all the evolutionary algorithms tested in this paper encounter performance degradedness to some extent. Amongst these algorithms, the multipopulation based change handling mechanism is generally more robust for a larger number of objectives, but has difficulty in deal with time-varying deceptive characteristics
Epileptiform response of CA1 neurones to convulsant stimulation by cyclothiazide, kainic acid and pentylenetetrazol in anaesthetized rats
AbstractWe have previously reported that cyclothiazide (CTZ) evokes epileptiform activities in hippocampal neurons and induces seizure behavior. Here we further studied in vivo the sensitivity of the hippocampal CA1 neurons in response to CTZ in epileptogenesis in comparison with two other classic convulsants of kainic acid (KA) and pentylenetetrazol (PTZ).CTZ administered intracerebral ventricle (i.c.v.) induced epileptiform activities from an initial of multiple evoked population spikes, progressed to spontaneous spikes and finally to highly synchronized burst activities in hippocampal CA1 neurons. PTZ, when given by subcutaneously, but not by intracerebral ventricle injection, evoked similar progressive epileptiform activities. In contrast, KA given by i.c.v. induced a quick development of epileptiform burst activities and then shortly switched to continuous high frequency firing as acute status epilepticus (ASE). Pharmacologically, alprazolam, a high-potency benzodiazepine ligand, inhibited CTZ and PTZ, but not KA, induced epileptiform burst activities while GYKI 53784, an AMPA receptor antagonist, suppressed CTZ and KA but not PTZ evoked epileptiform activities.In conclusion, CTZ and PTZ induced epileptiform activities are most likely to share a similar progressive pattern in hippocampus with GABAergic mechanism dominant in epileptogenesis, while CTZ model involves additional glutamate receptor activation. KA induced seizure in hippocampus is different to that of both CTA and PTZ. The results from this study indicate that hippocampal neurons respond to various convulsant stimulation differently which may reflect the complicated causes of the seizure in clinics
Complete chloroplast genome sequence of Rhododendron mariesii and comparative genomics of related species in the family Ericaeae
Rhododendron mariesii Hemsley et Wilson, 1907, a typical member of the family Ericaeae, possesses valuable medicinal and horticultural properties. In this research, the complete chloroplast (cp) genome of R. mariesii was sequenced and assembled, which proved to be a typical quadripartite structure with the length of 203,480 bp. In particular, the lengths of the large single copy region (LSC), small single copy region (SSC), and inverted repeat regions (IR) were 113,715 bp, 7,953 bp, and 40,918 bp, respectively. Among the 151 unique genes, 98 were protein-coding genes, 8 were tRNA genes, and 45 were rRNA genes. The structural characteristics of the R. mariesii cp genome was similar to other angiosperms. Leucine was the most representative amino acid, while cysteine was the lowest representative. Totally, 30 codons showed obvious codon usage bias, and most were A/U-ending codons. Six highly variable regions were observed, such as trnK-pafI and atpE-rpoB, which could serve as potential markers for future barcoding and phylogenetic research of R. mariesii species. Coding regions were more conserved than non-coding regions. Expansion and contraction in the IR region might be the main length variation in R. mariesii and related Ericaeae species. Maximum-likelihood (ML) phylogenetic analysis revealed that R. mariesii was relatively closed to the R. simsii Planchon, 1853 and R. pulchrum Sweet,1831. This research will supply rich genetic resource for R. mariesii and related species of the Ericaeae
Moonchild.
It begins with a number of orphaned ideas that decided to
come together to tell a story. Told through the illimitable language
of music and animation, Moonchild is a story of love and rebirth, an
age-old tale both personal and universal. Being the product of an
extremely close collaboration with my partner Chen Yanyun, we
will most probably have different yet similar experiences expressed
in each of our papers. In this paper, I shall go through the concepts
that led to the final story, the design and production processes, in
which I shall incorporate the main problems encountered. I will not
be discussing details in the make-up of the story, however, as any
attempt to do so would only tear it apart.Bachelor of Fine Art
The Diagnosis of Invasive and Noninvasive Pulmonary Aspergillosis by Serum and Bronchoalveolar Lavage Fluid Galactomannan Assay
The incidence and mortality of invasive pulmonary aspergillosis (IPA) are rising, particularly in critically ill patients and patients with severe chronic obstructive pulmonary disease (COPD). Noninvasive aspergillosis occurring in these patients requires special attention because of the possibility of developing subsequent IPA, given the poor health and worsened immune state of these patients. We compared the performance of the Platelia galactomannan (GM) enzyme immunoassay in the bronchoalveolar lavage fluid (BALF) and serum. The sensitivity, and specificity of BALF-GM were 85.4% and 62.4%, and those of serum-GM were 67.9% and 93.5% at the cutoff index of 0.5. As the cutoff index increased, the specificity of BALF-GM detection was increased with the detriment of sensitivity. The area under the ROC curves was 0.817 (95% CI: 0.718–0.916) for BALF-GM and 0.819 (95% CI: 0.712–0.926) for serum-GM. The optimal cutoff index was 1.19 for BALF-GM, and the sensitivity and specificity were 67.9% and 89.2%. The BALF-GM assay is more sensitive in detecting pulmonary aspergillosis than serum-GM assay and fungal cultures. However, BALF-GM assay has a high false-positive rate at the cutoff index of 0.5. Hence, the diagnostic cutoff index of the BALF-GM assay should be improved to avoid the overdiagnosis of pulmonary aspergillosis in clinic
The Identification of Cucumber TDC Genes and Analyses of Their Expression and Functions under Abiotic Stress Conditions
Melatonin is a crucial regulator of plant growth and development as well as stress tolerance. However, we only have a limited understanding of the functions of endogenous melatonin. Tryptophan decarboxylase (TDC) serves as the initial rate-limiting enzyme in the melatonin synthesis pathway. To date, no cucumber TDC gene has been cloned and characterized. In this study, we identified two TDC genes (CsTDC1 and CsTDC2) in the cucumber genome. The subcellular localization analysis indicated that CsTDC1 and CsTDC2 are predominantly localized in the cytoplasm and plasma membrane. Tissue-specific expression analyses revealed that CsTDC1 and CsTDC2 are expressed in both vegetative and reproductive organs. Many cis-elements related to stress, hormone, and light responses as well as development were identified in the CsTDC promoter regions. Furthermore, the expression of CsTDC1 and CsTDC2 was strongly induced by treatments with various abiotic stresses and exogenous hormones. The transient overexpression of CsTDC1 and CsTDC2 in tobacco leaves resulted in increases in the TDC activity and melatonin content, along with improved tolerance of tobacco leaves to salt, drought, and low-temperature stresses. Notably, the overexpression of CsTDC2 had a more pronounced effect than the overexpression of CsTDC1. Accordingly, both CsTDC genes, but especially CsTDC2, may be important for regulating cucumber growth, development, and stress tolerance. The study findings provide a theoretical and experimental basis for future functional analyses of endogenous melatonin in cucumber
Physiological and transcriptomic analysis of yellow leaf coloration in Populus deltoides Marsh.
Populus deltoides Marsh has high ornamental value because its leaves remain yellow during the non-dormant period. However, little is known about the regulatory mechanism of leaf coloration in P. deltoides Marsh. Thus, we analyzed the physiological and transcriptional differences of yellow leaves (mutant) and green leaves (wild-type) of P. deltoides Marsh. Physiological experiments showed that the contents of chlorophyll (Chl) and carotenoid were lower in mutant leaves, and the flavonoid content did not differ significantly between mutant and wild-type leaves. Transcriptomic sequencing was further used to identify 153 differentially expressed genes (DEGs). Functional classifications based on Gene Ontology enrichment and Genome enrichment analysis indicated that the DEGs were involved in Chl biosynthesis and flavonoid biosynthesis pathways. Among these, geranylgeranyl diphosphate (CHLP) genes associated with Chl biosynthesis showed down-regulation, while chlorophyllase (CLH) genes associated with Chl degradation were up-regulated in yellow leaves. The expression levels of these genes were further confirmed using quantitative real-time PCR (RT-qPCR). Furthermore, the estimation of the main precursors of Chl confirmed that CHLP is a vital enzyme for the yellow leaf color phenotype. Consequently, the formation of yellow leaf color is due to the disruption of Chl synthesis or catabolism rather than flavonoid synthesis. These results contribute to our understanding of mechanisms and regulation of leaf color variation in poplar at the transcriptional level
Uptake, Translocation, and Biotransformation of Organophosphorus Esters in Wheat (<i>Triticum aestivum</i> L.)
The
uptake, translocation and biotransformation of organophosphate
esters (OPEs) by wheat (<i>Triticum aestivum</i> L.) were
investigated by a hydroponic experiment. The results demonstrated
that OPEs with higher hydrophobicity were more easily taken up by
roots, and OPEs with lower hydrophobicity were more liable to be translocated
acropetally. A total of 43 metabolites including dealkylated, oxidatively
dechlorinated, hydroxylated, methoxylated, and glutathione-, and glucuronide-
conjugated products were detected derived from eight OPEs, with diesters
formed by direct dealkylation from the parent triesters as the major
products, followed with hydroxylated triesters. Molecular interactions
of OPEs with plant biomacromolecules were further characterized by
homology modeling combined with molecular docking. OPEs with higher
hydrophobicity were more liable to bind with <i>Ta</i>LTP1.1,
the most important wheat nonspecific lipid transfer protein, consistent
with the experimental observation that OPEs with higher hydrophobicity
were more easily taken up by wheat roots. Characterization of molecular
interactions between OPEs and wheat enzymes suggested that OPEs were
selectively bound to <i>Ta</i>GST4–4 and CYP71C6v1
with different binding affinities, which determined their abilities
to be metabolized and form metabolite products in wheat. This study
provides both experimental and theoretical evidence for the uptake,
accumulation and biotransformation of OPEs in plants