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Abstract—Dynamic multiobjective optimisation deals with
multiobjective problems whose objective functions, search spaces,
or constraints are time-varying during the optimisation process.
Due to wide presence in real-world applications, dynamic mul-
tiobjective problems (DMOPs) have been increasingly studied
in recent years. Whilst most studies concentrated on DMOPs
with only two objectives, there is little work on more objectives.
This paper presents an empirical investigation of evolutionary
algorithms for three-objective dynamic problems. Experimental
studies show that all the evolutionary algorithms tested in
this paper encounter performance degradedness to some extent.
Amongst these algorithms, the multipopulation based change
handling mechanism is generally more robust for a larger number
of objectives, but has difficulty in deal with time-varying deceptive
characteristics.

I. INTRODUCTION

MANY real-world multi-objective optimisation problems
(MOPs) change over time in a dynamic manner, such

as planning [3], [28], scheduling [6], [23], control [8], [14],
[30], and metabolic modelling [34]. This kind of problem
is known as dynamic multi-objective optimisation problems
(DMOPs). Due to dynamics, the optimisation of DMOPs is
much more challenging than that of static MOPs as it has to
deal with not only conflicting objectives, but also any change
in objective functions or constraints. In other words, dynamic
multiobjective optimisation algorithms (DMOAs) must be ca-
pable of tracking the changing Pareto-optimal front (PF) and/or
Pareto-optimal set (PS) to provide a set of diverse solutions
that approximates the new PF and PS over time.

Dynamic multi-objective optimisation (DMO) has attracted
increasing research interest in recent years and there have
been significant contributions made to this research field. So
far, much effort has been mainly devoted to two main topics:
benchmarking and algorithm design. The following delivers a
brief review of the topics.

a) Benchmarking: Benchmark test problems are of
great importance to evaluating the relative performance of
DMOAs. They contribute to analysing and identifying the
strengths and weaknesses of an algorithm in order to modify
it and improve its performance. In the DMO literature, some
static test problems, including the ZDT [33] and DTLZ [7] test

suites, have been modified to develop dynamic characteristics
that may appear in real life. The commonly used dynamic
test suite, i.e. the FDA test suite [8], is such a case. Jin
and Sendhoff [19] developed an open scheme of aggregating
objective functions of existing test problems by dynamically
changing weights to form a low-dimensional DMOP. Guan et
al. [11] studied DMOPs with objective replacement, where
some objectives may be replaced with new objectives during
the evolution. Mehnen et al. [21] argued that the DTLZ
and ZDT test suites are already challenging in their static
version, and simpler test functions are needed to analyse the
effect of dynamics in DMOPs. Hence, they suggested the
DSW functions for DMOPs. A number of recent studies have
introduced more test problems with diverse dynamics [1], [9],
[18]. However, most of them focus on biobjective cases.

b) Algorithm Design: Confronted with DMOPs, it is
natural to devise algorithms to solve them. Whenever a change
is detected in the current optimisation environment, it is
important that there is a good DMO algorithm available to
handle the change efficiently. Simply restarting the optimisa-
tion process is too naive and inefficient in most cases unless the
environmental change is extremely severe. Similar to dynamic
single-objective optimisation [29], there mainly exists three
popular types of change reaction methods. The first or foremost
method is diversity introduction/maintenance. For example,
the nondominated sorting genetic algorithm II (NSGA-II) was
modified by incorporating with diversity introduction tech-
niques, e.g. random initialisation or hypermutation, in order to
handle dynamic environments [6]. In [10], a multipopulation
strategy was used so as to resist diversity loss in the event of
changes.

The second option is to predict the moving PF/PS. Predic-
tion techniques have been extensively exploited for DMO in
recent years. A wide variety of prediction models were built
[12] to predict the future environment behaviours. However,
a prediction-based method is best applicable to the situation
that environmental changes follow a regular pattern. It is very
likely to fail for unpredictable environmental changes.

Another way to deal with DMOPs is to speed up the
convergence process of population when a change occurs.
Memorising some information of past environments can be



very helpful for reinitialising population for a new environment
in a more promising search subspace. Such a method has been
proved very useful for dynamic single-objective optimisation
[2], [24], [29], but it is rarely studied in the context of DMO,
possibly due to vast storage cost. Fast convergence can be
also achieved by well-organised population update structure.
In a recent study [17], generational and steady-state search
structures were nicely incorporated to evolve the population
fast toward the PF. It was shown that this method is able to
track environmental changes rapidly.

Despite growing studies on the two topics mentioned
above, most of them are done for biobjective cases. On one
hand, it is much easier to construct biobjective test problems
than triobjective ones. It is also easier to control problem
properties and dynamics in the lower case. On the other
hand, from the algorithms’ point of view, more objective
functions means an increase in search burden. Besides, it is
not as straightforward as biobjective optimisation to assess
and visualise the performance of algorithms in question. For
these reasons, there have been significantly few studies on
dynamic problems with three or more objectives. In order
to have a good understanding of how much the optimisation
difficulty increases and what the main challenges are in higher-
dimensional (objective space) DMO, this paper presents an
empirical study of several algorithms on the tri-objective
dynamic optimisation.

The rest of this paper is organised as follows. Section II
presents related work and a brief description of the three-
objective test problems for our empirical studies. Section
III describes experimental settings. Section IV presents the
experimental results and analysis. Section V concludes the
paper and suggests some possible directions for our future
work.

II. RELATED WORK

A. Classification of DMO Environments

A good classification of dynamic environments helps to
understand dynamics and therefore design corresponding algo-
rithms that can handle the dynamics. According to [8], DMOPs
can be classified into four types based on the induced effect
of change on the PF/PS:

• Type I - the PS changes over time while the PF
remains stationary.

• Type II - both the PF and PS change over time.

• Type III - the PF changes over time while the PS
remains stationary.

• Type IV - both the PF and PS remain stationary,
although the objective functions or constraints may
change over time.

Tantar et al. [26] argued that the classification by Farina et
al. [8], although of undisputed importance, does not capture
where dynamic changes in DMOPs come from. Accordingly,
they proposed a cause-based classification for dynamic envi-
ronments:

• 1st order - the decision variables change over time.

• 2nd order - the objective functions change over time.

• 3rd order - the current values of the decision variables
or the objective functions depend on their previous
values.

• 4th order - parts of or the entire environments change
over time.

B. Three-objective Dynamic Problems

Most existing test problems in the literature are not objec-
tive scalable. Very few of them are three-objective dynamic
problems. The study in [16] proposed a systematic framework
to generate DMOPs with more than two objectives. Five test
instances (SJY1-SJY5) were therefore created. The detailed
definition for them can be found in [16]. The time t in each
problem is defined as:

t =
1

nt

⌊
τ

τt
⌋ (1)

where nt represents the severity of change, τ is the iteration
counter and τt represents the frequency of change.

In what follows, we briefly describe the dynamics or
features involved in these problems.

1) SJY1: SJY1 has a linear PF which keeps stationary over
time. However, its PS keeps changing over time. This problem
is mainly used to test the tracking ability of algorithms on the
changing PS.

2) SJY2: In SJY2, position-related variables [15] are
swapped with each other when a change occurs. This swap
can lead to significant diversity loss for population-based
algorithms. The overall PF shape of SJY2 is a convex hyper-
surface, and solutions become few when each objective value
moves away from the origin. This problem not only tests the
diversity performance of algorithms, but also assesses to what
extent PF approximations cover the true PF.

3) SJY3: Similar to SJY2, SJY3 also has a swap function,
but the swap function can swap between position-related
variables and distance-related variables [15]. The interaction
between two variable subsets is to some extent a severe change,
which makes it difficult for an algorithm to relocate the new
PS. Besides, the objective range is scaled with time, and the
dynamic creates a changing number of extreme PF solutions
far from or close to others.

4) SJY4: SJY4 is a problem whose PF shape can be
concave or convex over time. It is important to realise that
a change in the PF shape requires a good response from
the distribution of the PS in order to obtain well-diversified
solutions on the PF.

5) SJY5: SJY5 is a problem having special characteristics.
we briefly describe its definition here to reveal its speciality:

min































f1 =
M−1
∏

j=1

cos(0.5πxj)

fi=2:M−1 = sin(0.5πxM−i+1)
M−i
∏

j=1

cos(0.5πxj)

fM =
(

1+g(x,t)
1+cos2(0.5πx1)

)
1

(1+g(x,t))B(t)

(2)
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Fig. 1. PFs of SJY5 for three objectives: (a) the true PF; (b) the deceptive
PF.

where g(x, t) =
∑

xi∈xII
x2
i (xII = (xM , . . . , xn) is a subset

of n decision variables) and B(t) = 1.5+ 1.2 sin(0.5πt). The
search space of SJY5 is restricted to [0, 1]n. The PF of this
problem can be described as fM (1 + f2

1 + · · · + f2
M−1) = 1,

which is illustrated in Fig. 1(a), and the PS is xi = 0, ∀xi ∈
xII. From the definition, we can see that SJY5 is a Type-IV
problem as both the PF and PS remain stationary. It is worth
noting that SJY5 conceives deceptive properties that hinder
algorithms from finding the true PF, and the difficulty changes
over time. Due to the deceptive feature, algorithms are very
likely to get into the local PF, as illustrated in Fig. 1(b). The
following gives the proof.

For the convenience of notation, let g(x) = 1+g(x, t) and

f̂ = f2
1 + · · ·+f2

M−1. It is easy to see that f̂ = cos2(0.5πx1),
and the last objective fM can be simplified as

fM =

(

g(x)

1 + f̂

)
1

g(x)B(t)

(3)

where fM can be seen as a differential function of g (1 ≤ g <
+∞), written as fM (g). We can find the global minimum by
using the first derivative test:

f ′

M (g) =

(

g

1 + f̂

)
1

gB(t)
(

1

gB(t)+1
(1−B(t) log

g

1 + f̂
)

)

(4)

where the critical point is g = (1+f̂) exp( 1
B(t) ). It is clear that

fM (g) is increasing on [1, (1 + f̂) exp( 1
B(t) )] and decreasing

on [(1 + f̂) exp( 1
B(t) ),+∞]. Since fM (1) = 1

1+f̂
< 1 and

fM (+∞) = lim
g→+∞

fM (g) = exp( lim
g→+∞

log g−log(1+f̂)
gB(t) ) = 1,

the global minimum is clearly at g = 1. Since fM (g) has a

monotonous decrease in the range [(1 + f̂) exp( 1
B(t) ),+∞]

and this range is relatively large compared with the well/basin

([1, (1 + f̂) exp( 1
B(t) )]) of the global minimum, evolution-

ary algorithms are very likely to search solutions in the
monotonously decreasing range, resulting in a local PF instead
of the global one. Besides, the dynamic on SJY5 actually shifts

the position of the critical point g = (1 + f̂) exp( 1
B(t) ) over

time. As a result, the “aperture” size of the well/basin leading
to the global minimum varies over time.

6) SJY6: A New Discontinous Problem: Although the
above five problems capture a variety of dynamic and problem
properties, none of them is discontinous or has a time-varying
disconnected PF. Here, we add a new problem of this type to

0

0.5

1
0

0.5

1

0

2

4

f2

t=0

f1

f
3

0.4

0.6

0.8

1

1.2
0.4 0.6

0.8 1
1.2

2

4

f2

t=0.2

f1

f
3

0.6
0.8

1
1.2

1.4

0.60.8 1 1.21.4

1

2

3

4

f1

t=0.3

f2

f
3

0.6
0.8

1
1.2

1.4

0.6
0.8

1
1.2

1.4

2

4

f1

t=0.4

f2

f
3

Fig. 2. PFs of SJY6 for t = 0, 0.2, 0.3, and 0.4 for three objectives.

the SJY family, called SJY6, which is defined as

min















f1 = (1 + g(x, t)) cos2(πx1

2 ) +G(t)

f2 = (1 + g(x, t)) cos2(πx2

2 ) +G(t)

f3 =
2
∑

j=1

[sin2(
πxj

2 )+sin(
πxj

2 )cos2(p(t)πxj)]+G(t)

(5)

wherer g(x, t) =
n
∑

i=3

(xi −G(t))2, p(t) = ⌊6G(t)⌋, and

G(t) = | sin(0.5πt)|. The search space is [0, 1]n. It is clear
that the PS is xi = G(t), ∀i = 3, . . . , n. However, the PF
cannot be explicitly expressed.

The PF of SJY6 consists of a number of disconnected
regions which is controlled by a time-dependent parameter
p(t) in the last objective, as illustrated in Fig. 2. Apart from
disconnectivity, the overall PF also shifts over time. The PS is
also dynamic, so SJY6 is a Type-II DMOP. SJY6 can be used
to test an algorithm’s ability to track the time-shifting of PF
and maintain well-distributed subpopulations in different and
varying PF subregions.

III. EXPERIMENTAL SETTINGS

A. Compared Algorithms

Many static multi-objective optimisation evolutionary al-
gorithms (MOEAs) have been adapted to handle DMOPs [4],
[6], [10], [20], [25]. Other strategies, such as prediction for
population reinitialisation [32], population prediction strategy
(PPS) [31], and inheritance strategy [11], have also been
developed for DMO. This paper compares three widely used
algorithms in the DMO literature, and they are DMOPSO
[20], dCOEA [10], and DNSGA-II [6]. These algorithms are
relatively old compared with recently developed ones [17], but
they have been widely reported to have good performance
for DMOPs, particularly on 2-objective cases. Here, we use
them to illustrate how 3-objective DMOPs affect EAs’ search
behaviour. The compared algorithms belong to different classes
of meta-heuristics and each has a mechanism of change
detection. All the algorithms was allowed to use 10% of



population (randomly picked) to detect environmental changes.
Other parameter settings of each algorithm are derived from
the referenced paper.

All the algorithms were tested on the triobjective SJY
problem instances.The population size was set to 300 for each
algorithm. To study the effect of the frequency of change
(τt) on each problem, nt was set to 10, and τt was set to
τt = 5, 10, 20, 30, 50. For a fair comparison, the total number
of changes was set to 20 during the evolution. Besides, 100
more generations were given to each algorithm before the first
change to minimize the potential effect of static optimisation.
Thus, the total number of generations allowed was 100+20τt.

B. Dynamic Performance Measures

In DMO, the PF of a DMOP is susceptible to change.
Thus, the aim is not only to pursue a well-converged and well-
diversified PF, but also to track the changing PF over time.
Let PF(t) denote the approximated PF at time step t, so an
alternative performance measure can be to assess the PF(t).

Coello and Cortés [5] proposed the concept of inverted gen-
erational distance (IGD), which estimates how far the elements
in the true PF are from those in the PF approximation. The
IGD measure can be used for quantifying both the diversity
and convergence of an MOEA at each time step, and a set of
IGD values can be obtained within a number of time windows
(i.e., Ts). In this paper, we suggest the average value of the
obtained IGD values for DMO assessment, which is calculated
by

MIGD =
1

Ts

Ts
∑

t=1

IGD(t) (6)

where MIGD evaluates the average IGD metric over Ts time
windows.

IV. EMPIRICAL ANALYSIS

A. General Results

Table I presents the average rank over 30 runs for each
problem and each setting of τt. The ranking was calculated
by the Wilxcon rank-sum test on the MIGD measure at
the significance level of 0.5, together with the Bonferroni
correction [22] to reduce statistical Type-I errors.

For SJY1, dCOEA is clearly the best performer for all
the settings of τt, followed by DMOPSO, and then DNSGA-
II. This means, compared with DNSGA-II, dCOEA and
DMOPSO has a faster convergence speed, which therefore
renders better ability to track the moving PS.

SJY2 has a stationary PF, however, its PS changes over
time due to the swap of pairs of position-related decision
variables. Besides, there are dependencies among variables
in SJY2. For smaller values of τt, the MIGD values of
DNSGA-II is not as good as those of dCOEA, but DNSGA-
II outperforms dCOEA for larger values of τt (that is, slower
environmental changes). This indicates that DNSGA-II may be
more suitable than dCOEA for dealing with variable-linkage
problems if enough time is given for convergence. DMOPSO
performs poorly with regard to the MIGD measure for all the
settings of τt in this situation. The comparison on this problem
suggests that fast-converging algorithms, e.g. DMOPSO, have

no advantage when facing possible diversity loss. The diversity
increase mechanism in DNSGA-II does not exert its effect
in fast-changing environments, but is very helpful in slow-
changing environments.

The amount of diversity loss in SJY3 is bigger than
that in SJY2. The table shows that dCOEA is always the
best performer for all the τt values, followed by DNSGA-II.
DMOPSO ranks the last.

SJY4 challenges the uniformity of points on the PF. The
comparison between DNSGA-II and dCOEA indicates that
dCOEA struggles to obtain uniformly-distributed solutions for
fast-changing environments, but this difficulty begins to dis-
appear when the environmental changes become less frequent.
DMOPSO performs worst on SJY4.

Interestingly, dCOEA has the worst performance for SJY5.
This suggests that the time-varying deceptive feature in SJY5
poses a great challenge to multipopulation based strategies.
DNSGA-II is very capable of handling this type of problem.

For the discontinuous SJY6 problem, the ranks for the
three algorithms remain unchanged regardless of τt values.
dCOEA performs the best, followed by DNSGA-II, and then
by DMOPSO.

Figure 3 plots the average IGD values obtained by the three
algorithms for the setting of τt = 20 and nt = 10 over 30 runs.
The figure clearly illustrates that dCOEA has the best tracking
performance for all the problems except SJY5, although it is
affected massively by the presence of environmental changes
(see the high-magnitude spikes). This suggests that dCOEA has
a very good response to a change and can quickly converge
toward the PF of the new environment. For SJY5, DNSGA-II
is the best performer with a much lower IGD value for each
environmental change compared with dCOEA and DMOPSO.
It means dCOEA and DMOPSO probably get trapped into the
local PF of this problem whereas DNSGA-II not.

Whilst the above analysis helps to understand the average
performance of algorithms on SJY problems, it is more de-
sirable to visually have a close look at their tracking ability.
To this end, the PF approximations of the first several time
steps (from t = 0 to t = 0.3) for three selected problems are
depicted in Figs. 4–6. From the figures, it is easy to see that
dCOEA has no difficulty in tracking the moving PS of SJY1.
but loses a large amount of diversity for SJY2 and fails to
locate the global PF for SJY5. DNSGA-II has good diversity
in both SJY1 and SJY5, but it is not well converged to the
PF. On the other hand, DMOPSO is struggling for all three
problems, as evidenced by poor diversity and convergence.

It is understandable that DMOPSO performs poorly among
these algorithms because it does not increase or maintain
diversity in the event of change, resulting in the population
not being able to adapt to the new environment quickly.

B. Impact of the Severity of Change

Beside the frequency of change, the severity of change is
another major factor that influences algorithms’ performance.
For this reason, we have tested the algorithms at different
severity levels, i.e. nt =2, 5,10, and 20, on SJY3. The
frequency of change was set to 10. The other parameters
remain the same as in the previous experiment.



TABLE I. PERFORMANCE RANKING BY THE MIGD METRIC FOR SJY PROBLEMS

τt rank SJY1 SJY2 SJY3 SJY4 SJY5 SJY6

5

1st dCOEA dCOEA dCOEA DNSGA-II DNSGA-II dCOEA

2nd DMOPSO DNSGA-II DNSGA-II dCOEA DMOPSO DNSGA-II

3rd DNSGA-II DMOPSO DMOPSO DMOPSO dCOEA DMOPSO

10

1st dCOEA dCOEA dCOEA DNSGA-II DNSGA-II dCOEA

2nd DNSGA-II DNSGA-II DNSGA-II dCOEA DMOPSO DNSGA-II

3th DMOPSO DMOPSO DMOPSO DMOPSO dCOEA DMOPSO

20

1st dCOEA dCOEA dCOEA dCOEA DNSGA-II dCOEA

2nd DMOPSO DNSGA-II DNSGA-II DNSGA-II DMOPSO DNSGA-II

3rd DNSGA-II DMOPSO DMOPSO DMOPSO dCOEA DMOPSO

30

1st dCOEA DNSGA-II dCOEA dCOEA DNSGA-II dCOEA

2nd DMOPSO dCOEA DNSGA-II DNSGA-II DMOPSO DNSGA-II

3rd DNSGA-II DMOPSO DMOPSO DMOPSO dCOEA DMOPSO

50

1st dCOEA DNSGA-II dCOEA dCOEA DNSGA-II dCOEA

2nd DMOPSO DNSGA-II dCOEA DNSGA-II DNSGA-II DMOPSO DNSGA-II

3rd DMOPSO DMOPSO DMOPSO dCOEA DMOPSO
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Fig. 3. The mean IGD curves of three algorithms with τt = 20 over 30 runs on SJY1-SJY6.

Figure 7 displays the mean IGD values over 30 runs
obtained by the four algorithms under different severity levels.
It can be observed that, as nt increases (i.e., the severity of
change becomes smaller), all the tested algorithms achieve
better performance except DMOPSO. On the other hand,
DNSGA-II is very stable in response to environmental vari-
ations. The IGD values of DMOPSO and dCOEA fluctuate
seriously when a new change occurs, but dCOEA is capable of
overcoming the dynamics and finally converges nicely toward
the changing PF at the end of each time window. DMOPSO,
however, seems to lose track of the environmental changes,
leading to an increase in the IGD value after each time window.
The poor performance of DMOPSO can be attributed to the
fact that, in the event of changes, DMOPSO does not introduce
any mechanism to increase or preserve diversity (while the
other three algorithms employ diversity strategies), making
it unable to react to the new change promptly. This figure
once again confirms that the population diversity is extremely
important in DMO.

V. CONCLUSIONS AND FUTURE WORK

Whilst most existing studies have been devoted to biob-
jective problems in DMO, it remains unclear what challenges
posed by triobjective problems and how difficult they are. This
paper has presented an empirical study of some algorithms on
triobjective dynamic problems. The experimental results have
revealed that diversity is a again key factor that influences the
performance of MOEAs when solving triobjective DMOPs.
Amongst the three tested algorithms, dCOEA has the best
overall performance on the SJY problems. However, dCOEA
has also been found to struggle to solve problems with time-
varying deceptive characteristics.

As a first step, in this paper, the analysis has been focused
on triobjective DMOPs with several dynamic features. The
future work will concentrate on a comprehensive theoretical
analysis on dynamic many-objective problems and on vari-
ous complexities, such as disconnectedness and degeneration.
Besides, we will also focus on handling some open issues
of DMO, e.g., change detection and dynamic performance
measures.
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Fig. 4. PF approximations of three algorithms on SJY1 for the first four time steps.
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Fig. 5. PF approximations of three algorithms on SJY2 for the first four time steps.
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Fig. 6. PF approximations of three algorithms on SJY5 for the first four time steps.

ACKNOWLEDGEMENTS

This work was supported in part by the Engineering and
Physical Sciences Research Council of U.K. under the project
“Synthetic Portabolomics: Leading the way at the crossroads
of the Digital and the Bio Economies (EP/N031962/1)” , and
in part by the National Natural Science Foundation of China
under Grant 61673331.

REFERENCES

[1] S. Biswas, S. Das, P. N. Suganthan, and C. A. Coello Coello, “Evolu-
tionary multiobjective optimization in dynamic environments: A set of
novel benchmark functions,” in: Proc. 2014 IEEE Congr. Evol. Comput.,
2014, pp. 3192–3199.

[2] J. Branke, “Memory enhanced evolutionary algorithms for changing
optimization problems,” in: Proc. IEEE Congr. Evol. Comput., vol. 3,
1999, pp. 1875–1882.

[3] L. T. Bui, M. Zbignew, P. Eddy, and B. A. Manuel, “Adaptation in
dynamic environments: A case study in mission planning,” IEEE Trans.

Evolut. Comput., vol. 16, no. 2, pp. 190-209, 2002.
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