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A B S T R A C T

We have previously reported that cyclothiazide (CTZ) evokes epileptiform activities in hippocampal

neurons and induces seizure behavior. Here we further studied in vivo the sensitivity of the hippocampal

CA1 neurons in response to CTZ in epileptogenesis in comparison with two other classic convulsants of

kainic acid (KA) and pentylenetetrazol (PTZ).

CTZ administered intracerebral ventricle (i.c.v.) induced epileptiform activities from an initial of

multiple evoked population spikes, progressed to spontaneous spikes and finally to highly synchronized

burst activities in hippocampal CA1 neurons. PTZ, when given by subcutaneously, but not by

intracerebral ventricle injection, evoked similar progressive epileptiform activities. In contrast, KA given

by i.c.v. induced a quick development of epileptiform burst activities and then shortly switched to

continuous high frequency firing as acute status epilepticus (ASE). Pharmacologically, alprazolam, a

high-potency benzodiazepine ligand, inhibited CTZ and PTZ, but not KA, induced epileptiform burst

activities while GYKI 53784, an AMPA receptor antagonist, suppressed CTZ and KA but not PTZ evoked

epileptiform activities.

In conclusion, CTZ and PTZ induced epileptiform activities are most likely to share a similar

progressive pattern in hippocampus with GABAergic mechanism dominant in epileptogenesis, while CTZ

model involves additional glutamate receptor activation. KA induced seizure in hippocampus is different

to that of both CTA and PTZ. The results from this study indicate that hippocampal neurons respond to

various convulsant stimulation differently which may reflect the complicated causes of the seizure in

clinics.

� 2011 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Using chemically induced models to study epilepsy is now the
most widely used way in epilepsy research and screening of novel
antiepileptic drugs. However, the surprising fact is that we are still
unclear of how exactly these models work. What we know now is
that most of these models are founded based on the basal theory
which states the fundamental cause of epilepsy is the imbalance
between CNS excitatory and inhibitory systems.1–3 Chemical-
induced models, including kainic acid (KA) and pentylenetetrazol
(PTZ) models, often use different convulsant to mimic excitatory or
inhibitory stimulus to enhance system excitation or suppress
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proper inhibition of the network which finally induce hyper-
excitation towards seizures.

Cyclothiazide (CTZ) seizure animal model is a new chemical
convulsant model recently developed in our lab based on its dual
action mechanism in driving the central nervous system towards
hyper-excitation.4–6 CTZ is first known to act as an AMPA receptor
desensitization blocker, which can prolong glutamate excitatory
responses7–10 as well as increase presynaptic glutamate release.11–

13 Later, it has been demonstrated that CTZ could also directly
inhibit GABAA receptor function, acting as a GABAA receptor
blocker.14 We recently characterized the convulsant property of
CTZ both in vitro and in vivo to demonstrate that CTZ could induce
epileptiform bursts in hippocampal neurons,4,5 partly due to down
regulation of tonic GABAA receptor function15 and enhancement of
AMPA receptor function,4 which is also involved in BDNF-TrkB
signaling pathway.5 Recently, we further reported that CTZ could
induce seizure behavior in freely moving rats.6

PTZ is a noncompetitive GABAA receptor antagonist and
repeated subconvulsive doses of PTZ administration induced a
vier Ltd. All rights reserved.
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chemical-kindling model in both rats and mice,16,17 and this model
has been widely used as a routine test in screening antic-
onvulsants.18 In both in vivo and in vitro preparations, PTZ
administration caused hippocampal evoked population spike to
form double or multiple peaks19,20 a sign of the epileptogenesis in
hippocampus. It was also shown that PTZ-kindling can induce long-
lasting physiological changes within hippocampal CA1 area.21

KA is an agonist of kainite subtype of glutamate receptors and
was first established as a convulsant to induce epilepsy model by
Nadler and colleagues in 1978.29 It induced repetitive seizures and
neuronal damage in hippocampus and amygdala.22,23 A chronic
epilepsy state after latent period following status epilepticus is
now widely used in seizure studies. Previous studies also proved
that i.c.v. KA injection could induce lesion easily and neuronal cell
death in rodent hippocampus.24,25 Electrophysiological studies
showed that KA treatment increased dendritic excitability in
hippocampal CA1 and enhanced EPSP/PS coupling.26–28

Thus, the current study was designed to compare the
epileptogenesis differences among the CTZ, PTZ and KA induced
seizure models. By studying the in vivo hippocampal CA1 neuronal
response to these three different convulsants, we demonstrated
that CTZ and PTZ, but not KA, induced epileptiform activities
shared similar epileptogenesis process. The pharmacological study
also revealed that GABAergic mechanism was dominant for CTZ
and PTZ induced seizure activities with additional AMPA receptor
involvement for CTZ model.

2. Methods and materials

2.1. Animal preparation

All experiments were performed on urethane anaesthetized
(1.2 g kg�1, i.p.) male Sprague–Dawley rats (220–350 g). The level
of anaesthesia was assessed by the absence of paw withdrawal
reflex, and additional anaesthetic (urethane, 0.2–0.6 g kg�1, i.p.)
was administered as necessary. Body temperature was maintained
at 37 � 0.5 8C with a Harvard Homoeothermic Blanket (Harvard
Apparatus Ltd., Kent, UK). Animals were housed in a regulated
environment (21 � 1 8C) with a 12 h light–dark cycle, and food and
water available ad libitum. All experiments were approved by the local
committees of The Use of the Laboratory Animals, Fudan University
and carried out in accordance with Chinese National Science
Foundation animal research regulation. At the end of experiments,
animals were euthanized with overdose of urethane.

Animals were prepared as previously described.4,5,29 Animals
had their lateral tail vein cannulated for drug administration and
were mounted in a stereotaxic frame. An incision was made in the
midline of the head to expose the top part of the skull. For
implantation of the i.c.v. cannula, a drill hole was made on the skull
above the left side of the lateral ventricle (0.3 mm posterior to
bregma, 1.3 mm lateral to the midline). A guide cannula (Plastic
One, USA) was then placed 4 mm below the skull surface for drug
delivery, and secured by the dental cement.

2.2. Electrophysiological recording and data acquisition

For recording and stimulation, a large burr hole was made in the
left side of the incised skull above the hippocampal area, and the
dura was pierced and removed. The stereotaxic coordinates were
determined from the stereotaxic atlas of the rat brain.30 A
concentric bipolar metal electrode (Harvard Apparatus Ltd., Kent,
UK) was placed close to CA3 region (3.8–4.5 mm posterior to
bregma, 3.5–4.0 mm lateral to the midline, and 3.0–3.8 mm below
the brain surface) in order to stimulate the CA3 pyramidal cell layer
and/or Shaffer collateral pathway. For recording in the CA1
pyramidal cell layer, a tungsten electrode (0.5 MV, WPI, Steve-
nage, UK) was placed 3.5–4.2 mm posterior to bregma, 2.0–3.0 mm
lateral to the midline. The depth of the recording electrode was
approximately 2.0–2.5 mm below the brain surface as determined
by the sudden change of the electrical noise and the shape of the
evoked field excitatory postsynaptic potential (fEPSP) and popula-
tion spike (PS). For CA3-CA1 Shaffer collateral stimulation, a
constant current generator passed a square-wave pulse (0.2 ms in
duration) through the stimulating electrode (test pulse). Test
pulses evoked a positive excitatory postsynaptic field potential in
the CA1 with a population spike superimposed as a negative
deflection on the rising phase. After initial recording and
stimulation tests, both electrodes were adjusted to obtain the
maximal evoked EPSP and population spike amplitude. The PS
amplitude was used as a measure of postsynaptic responses, with a
stimulation intensity set at the current required to produce the
maximal response, predetermined by input–output curves. During
experiments, CA1 pyramidal cell excitability was sampled every
60 s by a test pulse. In-between stimulations, the baseline activity
was recorded for evidence of spontaneous activity. The
electrophysiological signals were amplified (200 times) and
filtered (0.3–3 kHz) using a NeuroLog System (Digitimer Ltd.,
Hearts, UK) and visualised and stored in a computer through an A–
D converter, CED 1401 micro (Cambridge Electronic Design,
Cambridge, UK). Once both electrodes were in the right place,
the fEPSPs and PS were monitored for at least 30 min (20 min of
baseline recording without stimulation and 10 min evoked EPSP/
PS recording) until a stable recording was achieved. Following a
30 min recorded baseline of all responses, drugs or vehicles were
administered slowly over a period of 10 min by intracerebral
ventricle (i.c.v.) injection (CTZ, PTZ and KA) via the pre-implanted
guide cannula into the lateral ventricle or by subcutaneous (s.c.)
injection (PTZ). Pharmacologically induced epileptiform activity
was monitored for at least 3 h after injection by observing changes
of evoked potentials transforming from single PS into multi-
peaked display and spontaneous epileptiform burst activity in CA1
pyramidal neurons.27 The anaesthetic level was monitored and
maintained throughout the course of experiments, in particular,
after convulsant drug administration.

2.3. Analysis of data

Epileptiform activity of CA1 pyramidal cells was analyzed
offline using Spike2 (an analysing program for CED 1401, Cam-
bridge, UK) and specific scripts designed for this study with Spike2.
Since multiple population spike (PS) peaks typically represent
epileptiform evoked responses, the evoked multiple PS peaks,
defined as the negative deflection peaks superimposed on the
rising phase of the evoked EPSPs, were counted. The spontaneous
high amplitude spiking events (>0.5 mV) were defined as those
containing 1 or 2 spikes occurring at low frequency (<1 Hz). The
latency for spontaneous high amplitude spikes was recorded from
the usual ‘silent’ baseline. The highly synchronized bursting
activity was defined, in distinguishing from spontaneous spiking
events, as having high frequency multiple high amplitude spikes
(>0.5 mV) with an initial interspike interval of less than 0.2 s, a
minimum of 5 spikes, and burst duration over 1 s.5

Group data were expressed as the mean � SEM. Across groups of
data, statistical significance between means was determined using
one-way ANOVA with Tukey HSD post hoc analysis (GraphPad Prism,
GraphPad Software Inc.). Comparisons within a group used a paired
two-tailed t test. Significance level was set at P < 0.05.

2.4. Histology, drugs and solutions

The following drugs were freshly made before each experiment:
KA (1 mg in 2.5 ml ACSF for i.c.v. injection). Cyclothiazide (5 mmol
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in 5 ml DMSO for i.c.v. injection) and PTZ (383 mg ml�1 in saline for
i.p. injection, 50 mmol in 5 ml ACSF for i.c.v. injection) were
purchased from Tocris (Northpoint, Bristol, UK); Pontamine Sky
Blue dye (20 mg ml�1; BDH, Poole) was dissolved in 0.5 M sodium
acetate; urethane (25%; Sigma–Aldrich Chemical Co., Poole,
Dorset) was dissolved in distilled water; alprazolam (10 mg ml�1

1 in normal saline) was supplied by the Huashan Hospital (Fudan
University, Shanghai); GYKI 53784 (5 mg ml�1 in normal saline for
i.v. injection) was a gift from Eli Lilly company.

At the end of experiments, Pontamine Sky Blue (1 ml) was
injected through the pre-implanted cannula to verify the cannula
position and drug diffusion area within the brain before the brain
was removed and fixed in 10% formal saline. Frozen sections
(80 mm) were cut. The Pontamine Sky Blue marked sites while the
stimulating and recording electrode tracks were visualized and
mapped onto standard sections of the brain30 similarly as reported
previously.5,6 For those successfully recovered recording/stimu-
lating tracks, they were all localized in the right place in CA1
pyramidal cell layer and CA3 area, respectively, and the marked
cannula sites were in the lateral ventricle.

3. Results

3.1. CTZ, PTZ and KA induced progressive multiple population spike

peaks in anaesthetized rats

In anaesthetized rats, recordings were made from CA1
pyramidal cell layer with stimulating rate at 1/60 s in the area
of CA3. In control condition, there was only one single downward
population spike (PS) embedded on top of the evoked upward EPSP
similar as previous reported4,5 (Fig. 1A).

CTZ (5 mmol in 5 ml DMSO), microinjected into left-side lateral
ventricle, induced time-dependent progressive increases of evoked
PS-peak from a single peak to double and then multiple peaks
(Fig. 1A). CTZ injection caused the evoked PS to progress to 2nd and
3rd or more (multiple) peaks in all 13 rats studied and the latency
for 2nd and multiple peaks to appear was 17.3 � 1.8 min and
34.9 � 3.8 min, respectively (Fig. 3A).

In contrast, PTZ (50 mmol in 5 ml ACSF), microinjected into left-
side lateral ventricle, neither evoked PS peak nor the spontaneous
activity (see below) change within the 3-h recording period. This
result indicates that PTZ is lack of epileptogenic effect when given

[()TD$FIG]

Fig. 1. Progressive change of the epileptiform hippocampal CA1 evoked potentials induc

(PS) peaks embedded in the evoked EPSPs in CA1 pyramidal cell layer were transform

administration of (A) CTZ (5 mmol, i.c.v.) and (B) PTZ (383 mg kg�1, s.c.), but not by (C) K

but also blocked evoked EPSP-PS after status epilepticus occurring.)
i.c.v. Since many reports have shown systemic administration of
PTZ induced seizures,31,32 next, we studied whether PTZ given by
subcutaneous injection could induce epileptiform activities.
Indeed, PTZ (383 mg kg�1, s.c.), similar as CTZ, induced time-
dependent progressive increases of evoked PS-peak from a single
peak to double and then multiple peaks (Fig. 1B). PTZ injection
caused the evoked PS to progress to 2nd and 3rd or more (multiple)
peaks in all 14 rats studied and the latency for 2nd and multiple
peaks to appear was 9.7 � 0.8 min and 27.3 � 4.1 min, respectively
(Fig. 3A).

As CTZ and PTZ shared a similar epileptiform progressive
character in evoked action potentials, we then tested another
classic convulsant compound kainic acid. KA (1 mg in 2.5 ml ACSF),
in contrast to CTZ and PTZ, only induced 2 in 10 rats tested to
progress to 2nd and multiple peaks. In the other 8 rats tested, the
burst activity rapidly occurred after KA injection (see below) and
then the EPSP and PS were not able to be evoked after bursts
(Fig. 1C).

As control for intra-ventricle vehicle injection, neither DMSO
(for CTZ, 5 ml, n = 6) nor ACSF (for KA, 2.5 ml, n = 3) induced any
changes on evoked population spikes.

3.2. CTZ, PTZ and KA induced spontaneous epileptiform activity in

anaesthetized rats

The baseline activity, before the convulsant drug administra-
tion, of the recordings from CA1 pyramidal cell layer was normally
‘‘silent’’, with no detectable activities such as spikes above the
baseline, in anaesthetized rats (Fig. 2), similar as previous
reported.4,5

CTZ (5 mmol in 5 ml DMSO), microinjected into left-side lateral
ventricle, after a delay, induced high amplitude, isolated spikes,
and then gradually progressed into highly synchronized epilepti-
form bursts (Fig. 2A). The latencies for the first spontaneous spike
and the first burst to occur after CTZ administration were
53.9 � 4.3 min (n = 13) and 111.7 � 14.6 min (n = 13), respectively
(Fig. 3B). Usually, the burst activities were relatively stable and lasted
beyond the experiment ending (>3 h after drug administration). Once
the bursting activity occurred, it was usually impossible to evoke
EPSPs and PS.

PTZ (50 mmol in 5 ml ACSF, n = 3) did not make any change in
the spontaneous activities within 3 h recording period (data not
ed by CTZ, PTZ and KA. Original traces showing the number of the population spike

ed, time dependently, from single peak to multiple peaks (arrow indicated) by

A (1 mg, i.c.v.) (*, stimulus artifact). (Note: KA not only inducing multiple PS peaks,
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Fig. 2. Progressive pattern of the epileptiform hippocampal CA1 activities induced by CTZ, PTZ and KA. Field potential recordings of the spontaneous hippocampal CA1

neuronal activities before and after CTZ, PTZ and KA stimulation. (A and B) Original traces showing (from left to right) the control baseline activity, spontaneous spikes (open

arrows) and first synchronized bursts (arrow head) occurring and progressed to consistent bursts before and after (A) CTZ (5 mmol, i.c.v.) and (B) PTZ (383 mg kg�1, s.c.)

injection. (C) Original traces showing (from left to right) the control baseline activity, high amplitude spontaneous activities, synchronized bursts and progressed to ASE

before and after KA (1 mg, i.c.v.) injection. Note, the traces under the original traces are expanded to show the detail of the activities and the traces in the box are enlarged to

view the activities (*, stimulus artifact).
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shown). In contrast, PTZ (383 mg kg�1) given by s.c. induced
similar change as CTZ injected by i.c.v. with induced high
amplitude and isolated spikes, and then gradually progressed into
highly synchronized epileptiform bursts (Fig. 2B). The latency for
the occurrence of the first spontaneous spike and the first burst
after PTZ administration were 30.9 � 2.2 min (n = 14) and
48.2 � 5.0 min (n = 14), respectively (Fig. 3B). Usually, the burst
activities were relatively stable and lasted beyond the experiment
ending (>3 h after drug administration). Once the bursting activity
occurred, it was usually unable to evoke EPSPs and PS similar as that
of CTZ.
[()TD$FIG]
Fig. 3. Group data of CTZ, PTZ and KA induced epileptiform activity latency. Bar

histograms showing the group data of the latency of epileptiform activities induced

by CTZ (5 mmol, i.c.v.), PTZ (383 mg/kg, s.c.) and KA (1 mg, i.c.v.). (A) Comparison of

the latency for evoked population spikes progressed to double peaks and multiple

peaks (�3 peaks) between CTZ and PTZ. (B) Comparison of the latency for

spontaneous spikes and synchronized bursts among CTZ, PTZ and KA. **P < 0.01,

***P < 0.001
In contrast, KA (1 mg in 2.5 ml ACSF, i.c.v.) evoked quick change
of the baseline spontaneous activities with the appearance of the
high amplitude spikes during KA injection period (see Section 2)
and shortly transformed to highly synchronized burst discharges,
which was then followed by continuously firing spikes with high
amplitude and frequency, defined as acute status epilepticus (ASE)
(Fig. 2C). The latency for the first spontaneous spike and the first
burst to occur after KA injection was 8.9 � 1.0 min (n = 10) and
33.6 � 3.2 min (n = 10), respectively (Fig. 3B). In contrast to the CTZ
and PTZ induced stable burst discharges, KA induced burst discharges
lasted relatively much shorter, with an average bursted period of
33.9 � 5.7 min and contained 7 � 1 bursts, ranging from 3 to 13
bursts in 10 rats studied. The burst activities were then transformed
to ASE discharges, which usually lasted for more than 5 min and, if
stopped, quickly started again with a very short gap. The latency for
the appearance of ASE discharges was 70.6 � 7.5 min and lasted
beyond the experimental ending (>3 h after KA injection).

As control for intra-ventricle vehicle injection, neither DMSO
(for CTZ, n = 6) nor ACSF (for KA, n = 3) induced any changes on
baseline activities.

3.3. Effect of alprazolam on epileptiform activities induced by CTZ, PTZ

and KA

To test the pharmacological differences among these three
chemical induced epileptogenic animal models, we first studied
the effect of alprazolam, a highly potent short-acting drug of the
benzodiazepine class, which was used clinically as an anticonvul-
sant,33,34 on the burst/ASE status induced by CTZ, PTZ and KA in
anaesthetized rats.

Alprazolam was administrated (0.4 mg kg�1, i.p.) three hours
after either CTZ (5 mmol, i.c.v.) or PTZ (383 mg kg�1, s.c.)
treatment, if there was stable bursting activities existing for more
than 30 min, or after KA (1 mg, i.c.v.) treatment, if the ASE was
stably existed. Alprazolam significantly suppressed both the CTZ
(n = 5) and the PTZ (n = 8) induced epileptiform burst frequency
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Fig. 4. Effect of alprazolam on CTZ, PTZ, KA induced epileptiform activities in hippocampal CA1 neurons. (A–C) Original traces showing CTZ and PTZ induced epileptiform burst

and KA induced ASE activities before and after alprazolam (0.4 mg kg�1, i.p.) injection. Alprazolam inhibited CTZ (A) and PTZ (B) induced bursts but not KA-induced ASE spikes

(C). (D) Bar histogram showing the group data of alprazolam inhibition on CTZ (n = 5) and PTZ (n = 8) induced burst activities (a) but no effect on KA (n = 9) induced ASE firing

(b). *P < 0.05, **P < 0.01.
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(Fig. 4A and B). The epileptiform bursts were reduced from
7.0 � 1.6 to 1.2 � 0.4 (bursts/30 min, P < 0.05) in CTZ group and
5.8 � 0.9 to 2.4 � 0.6 (bursts/30 min, P < 0.01) in PTZ group, before
and after alprazolam treatment, respectively (Fig. 4D). In contrast,
alprazolam had no effect on KA induced continuous firing spikes
(Fig. 4C). The firing frequency before and after alprazolam injection
was 5.0 � 0.8 and 4.8 � 1.1 Hz (n = 9, P > 0.5), respectively (Fig. 4D).

3.4. Effect of GYKI 53784 on epileptiform burst activity induced by

CTZ, PTZ and KA

Results of alprazolam study showed an effective action on
suppressing CTZ and PTZ, but not KA, induced epileptiform bursts
by modulation of the GABA system. As CTZ also involves the action
on AMPA receptors, we then applied GYKI 53784, a non-
competitive AMPA receptor antagonist, to test responses of CTZ,
PTZ and KA induced epileptiform activities.

GYKI 53784 was administrated (5 mg kg�1, i.v.) three hours
after either CTZ (5 mmol, i.c.v.) or PTZ (383 mg kg�1, s.c.)
treatment, if there were stable bursting activities existing for
more than 30 min, or 30 min after KA induced stable ASE firing.
GYKI 53784 significantly suppressed CTZ but not PTZ induced
epileptiform burst frequency (Fig. 5A and B). The epileptiform
bursts induced by CTZ was reduced from 6.4 � 2.1 to 1.2 � 1.0
(bursts/30 min, n = 5, P < 0.01) before and after GYKI 53784 injection,
respectively (Fig. 5Da). Interestingly, in all 5 rats studied, GYKI 53784
only inhibited the epileptiform bursts to transform the burst activities
backwards to the isolated spike firings (Fig. 5A). In contrast, the burst
activities induced by PTZ were not affected by GYKI with the burst
frequency at 8.6 � 2.3 and 7.6 � 1.9 (bursts/30 min, n = 7, P > 0.5),
before and after GYKI 53784 injection, respectively (Fig. 5C). In
addition, GYKI 53784 (5 mg kg�1, i.v.) also significantly inhibited KA
induced ASE firing in all 4 rats tested (Fig. 5C). The established ASE
spike firing frequency was reduced from an average of 7.3 � 1.6 Hz to
1.4 � 1.2 Hz (n = 4, P < 0.01), before and after GYKI administration,
respectively (Fig. 5Db).
4. Discussion

This study demonstrated that CTZ, PTZ and KA are all capable of
induce epileptiform activities in hippocampal CA1 pyramidal
neurons in anaesthetized rats. However, the neuronal seizure
activities induced by these three convulsants showed different
progressive patterns, with CTZ and PTZ shared a similar time-
dependent development way from initial increases of evoked
population spike peaks to the appearance of the spontaneous spike
then progress to the highly synchronized bursts. In contrast, KA
induced epileptiform activity has a fast development but short
lasting of both enhanced baseline activities and the burst activates
followed by the long lasting continuous high frequency spike
firing, classified as ASE discharges. Pharmacologically, we found
that enhanced GABAergic activation inhibited CTZ and PTZ induced
epileptiform bursting activities but with no effect on KA evoked
ASE discharges. In addition, antagonizing the AMPA receptors not
only inhibited KA induced epileptiform activities, but also
attenuated CTZ, but not PTZ, induced burst activities, changing
the highly synchronized burst firings to spike firing status.

The current study was designed to compare the hippocampal
CA1 neuronal response in three seizure animal models, among
them the CTZ model was a newly developed model in our lab.5,6

Since CTZ is a non-brain penetrating compound demonstrated in
our previous studies,4,5 the initial experimental regime was to
administer all these three convulsants by i.c.v. for direct
comparison. Indeed, both CTZ and KA administered by i.c.v.
induced epileptiform activities in the CA1 pyramidal neurons in
our anaesthetized rat models. However, to our surprise, when PTZ
was given by i.c.v. at the dose upto 50 mmol induced neither
evoked PS change nor spontaneous activity appearance, but it did
successfully induce epileptiform activities while given systemical-
ly (s.c.) as previously well documented.19,20,35 The lack of effect of
PTZ when given centrally was unlikely due to the dose of PTZ being
low in our current study. First, the concentration of PTZ given by
i.c.v. was already 10 times higher than CTZ (5 mmol), which did
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Fig. 5. Effect of GYKI on CTZ, PTZ and KA induced epileptiform activities in hippocampal CA1 neurons. (A–C) Original traces showing CTZ and PTZ induced epileptiform burst

and KA induced ASE activities before and after GYKI (5 mg kg�1, i.v.) injection. GYKI inhibited CTZ (A) and KA (C) but not PTZ (B) induced burst activities. (D) Bar histograms

showing the group data of GYKI inhibition on CTZ (n = 5) but not on PTZ (n = 7) induced bursting frequency (a) and inhibition on KA (n = 4) induced ASE firing (b). **P < 0.01.
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successfully induce epileptiform activities, used in the same
preparation in our current study. Secondly, the PTZ dose we used
(upto 50 mmol) proximally reached to a local concentration of
�25 mM, if the total rat brain extracellular fluid volume was
estimated at 2 mL, which was much higher than that commonly
used to induce epileptiform activities in in vitro concentration
controlled studies (3–10 mM of PTZ).36–38 Thus, we hypothesize
that PTZ may work as a convulsant by its metabolites instead while
central injection of PTZ failed to produce such metabolites.
However, this hypothesis seems contradictory to a previous
pharmacokinetic study showing that PTZ, when the cerebrospi-
nal/brain concentration reached proximally �46 and �109 mg L�1

(�0.23 mM and �0.55 mM, respectively), was capable of inducing
either the onset of the first myoclonic jerk or the maximal seizure,
respectively, in rats.39 The authors claimed that the seizure was
induced by PTZ rather than the metabolites. However, it is notable
that the PTZ concentration in cerebrospinal fluid induced maximal
seizure (�109 mg L�1) was almost 50 times lower than that of in
our current study by i.c.v. administration (�25 mM). In addition, in
this pharmacokinetic study, since PTZ was given by systemic
infusion, it could not distinguish whether the metabolites of the
PTZ or PTZ itself contributed to the convulsant action of PTZ.
Another argument was that the preparation used was different for
conscious rats in Raman and Levy’s39 study and anaesthetized rats
in current study. However, in our current anaesthetized animal
preparation, systemic administration of PTZ by s.c. at the dose of
110 mg kg�1 did indeed successfully induce epileptiform activities
such as multiple evoked PS peaks (data not shown) which was not
much different to those reported in conscious rodents.39,40 Thus,
we are confident to believe that the dose of PTZ injected by i.c.v.
route in current study was high enough, if it acts as a convulsant, to
induce epileptiform activities. However, the hypothesis, that the
convulsant action of PTZ might be mediated by its metabolites,
needs to be further investigated.

Similar as previously demonstrated,4,5 CTZ given centrally
(i.c.v.) induced progressive epileptogenesis: from initial evoked
population spike peak transforming from single peak in normal
condition towards multiple peaks,27 to the appearance of the
spontaneous high amplitude spikes, and then finally forming the
highly synchronized bursting activities. Interestingly, when PTZ
was given systemically, it shared the similar epileptogenic
progressive pattern. PTZ induced evoked population spike peak
transforming from single peak in normal condition towards
multiple peaks, and then the spontaneous activities, which was
seen in current study is similar to those previously well
documented.27,28 In addition, the burst activities induced by both
CTZ and PTZ were relatively stable after their occurrence, at least
beyond our experiment regime (>3 h) similar as previous reported
for CTZ model,7 and in some cases, burst activities were still
detectable 5–6 h after initial convulsant administration (data not
shown). In contrast, while KA was given by i.c.v., it showed totally
different epileptiform activity generation pattern with a fast
development but short lasting of the burst activity period
(�34 min in duration) followed by the long lasting continuous
high frequency spike firing. Due to its rapid onset of the induced
burst activities after KA injection, both the EPSP and PS were not
able to be evoked after bursts similar as previous reported after
spontaneous seizure.41 Thus the evoked potential change, which
was normally seen in in vitro brain slice study, was also not
detectable in our current study. Thus, we hypothesize that the
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differences of epileptogenesis among these three convulsants
induced epileptiform activities of CA1 hippocampal neurons are
likely due to the different pharmacological mechanisms behind
these three convulsants.

It is well known that the imbalance between excitation and
inhibition is important in the epileptogenic progress.1–3 Thus,
chemical convulsants showed different convulsive effects which
might be due to various pharmacological mechanisms. Among
them PTZ and KA models are the most widely used classic
chemical-convulsant models for epilepsy study and screening of
novel anti-epileptic drugs.25,29,30 PTZ produces its convulsive
effect by inhibiting the activity of GABA at GABAA receptors.35

KA is a specific agonist at the ionotropic glutamate receptor
kainate subtype which mimics the effect of glutamate.
Differently from these two classic convulsants, CTZ works
through a combination of potentiation of glutamate receptor
AMPA subtype function and inhibition of GABAA receptor
response.7–10,14 This has also been confirmed by our pharmaco-
logical results demonstrated in current study. Our results
showed that enhancement of the GABA function by modulating
the benzodiazepine site of the GABAA receptors in the CA1 area
using alprazolam abolished CTZ and PTZ, but not KA, induced
epileptiform bursting activities. In contrast, antagonization of
AMPA receptors by GYKI only inhibited CTZ and KA, but not PTZ,
evoked epileptiform activities. These data have further sup-
ported the widely accepted theory that the excitation/inhibition
imbalance is the most important fact in epileptogenesis. Thus
the different action site of KA (glutamate receptors) vs CTZ
(GABA and AMPA receptors) vs PTZ (GABA receptors) may
represent the different seizure induction and development
properties of these three convulsants.

Most of the previous studies on chemical convulsants stimula-
tion induced neuronal responses were based on the investigation
of the evoked population spike peak transformation.5,19,20,27 Few
reports demonstrated that convulsant stimulation could evoke
epileptiform bursting activities either in vitro or in vivo.42,43 It is
notable in current study that both PTZ and CTZ induced progressive
epileptogenesis towards the highly synchronized bursting activity
of CA1 pyramidal neurons, but KA stimulation failed to produce
highly synchronized bursting activities, instead evoked long
lasting high frequency spikes. In addition, our pharmacological
experiments also revealed that application of benzodiazepine
ligand alprazolam eventually abolished the epileptiform bursts
induced by both CTZ and PTZ. These results suggest that down
regulation of GABAergic function15 may be the dominant fact for
generating synchronized epileptiform bursting activities by CTZ
and PTZ, which was consistent with the notion that GABA activity
sets the tune for preventing epileptiform activities44 and GABA
function is essential for neuronal synchronization.45 However, this
hypothesis needs to be further studied, particularly for the CTZ
model.

In summary, our current study is the first to directly compare
the hippocampal CA1 neuronal responses to CTZ, a newly
developed convulsant of generating temporal lobe epilepsy animal
model6 with two classic convulsants, PTZ and KA. The results
suggest that the onset and the progress pattern of the epileptiform
activities in hippocampal neurons in various seizure animal
models are different which is likely attributed to the underline
pharmacological mechanisms. This may represent the complexity
of the seizure onset and development observed clinically.46–49 CTZ,
a newly discovered convulsant in our lab,5,6 with its dual action
mechanism on both glutamatergic and GABAergic systems, may
represent the true nature of one of the fundamental seizure
mechanism of imbalance of the glutamate excitation and GABA
inhibition in the central nervous system. Thus, CTZ model may
provide us a much better seizure animal model to represent the
complexity of the clinical seizure for epilepsy study and
anticonvulsant drug screening.
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