88 research outputs found

    Fetal Yawning

    Get PDF

    Charcot: Buddhist Leanings?

    Get PDF
    Jean-Martin Charcot, considered the father of modern neurology, had a complex personality featuring well-defined characteristics of introversion, competitiveness, irony, and skepticism. While biographers have described him as Republican, anticlerical, and agnostic, the literature also presents evidence that he came to admire Buddhism toward the end of his life; Charcot’s involvement with numerous patients suffering from incurable and insidious neurological diseases may have contributed to this change in attitude

    Yawning, fatigue and cortisol: expanding the Thompson Cortisol Hypothesis.

    Get PDF
    Yawning and its involvement in neurological disorders has become the new scientific conundrum. Cortisol levels are known to rise during stress and fatigue; yawning may occur when we are under stress or tired. However, the link between yawning, fatigue, and cortisol has not been fully understood. Expansion of the Thompson Cortisol Hypothesis proposes that the stress hormone, cortisol, is responsible for yawning and fatigue especially in people with incomplete innervation such as multiple sclerosis. This informs our understanding of the functional importance of the brain stem region of the brain in regulating stress and fatigue

    Yawning and cortisol levels in multiple sclerosis: Potential new diagnostic tool.

    Get PDF
    Yawning is a significant behavioural response and, together with cortisol, is potentially a new diagnostic marker of neurological diseases. Evidence of an association between yawning and cortisol was found which supports the Thompson Cortisol Hypothesis and thermoregulation hypotheses, indication that brain cooling occurs when yawning. 117 volunteers aged 18-69 years were randomly allocated to experimentally controlled conditions to provoke yawning. Thirty-three had been diagnosed with multiple sclerosis. Saliva cortisol samples were collected before and after yawning or after stimuli presentation in the absence of yawning. Hospital Anxiety and Depression Scale, General Health Questionnaire, demographic and health details were collected. Comparisons were made of yawners and non-yawners, healthy volunteers and MS participants. EXCLUSION CRITERIA: chronic fatigue, diabetes, fibromyalgia, heart condition, high blood pressure, hormone replacement therapy, stroke. Yawners had significant differences between saliva cortisol sample 1 and 2 among healthy participants (p < .007) and MS participants (p < .003). There was significant difference between the healthy versus MS non-yawners (P < .042) but not between yawners (p < .862). These results support the Thompson Cortisol Hypothesis suggesting that cortisol levels are elevated during yawning. Furthermore, this evidence suggests cortisol levels in the MS participants (non-yawners) are significantly different to those of healthy participants. Changes in cortisol levels may be similar in healthy and MS participants but when associated with observations of excessive yawning may become a new diagnostic tool in the early diagnosis of neurological symptoms. DRYAD DOI: https://doi.org/10.5061/dryad.r09m1

    Born to yawn? Understanding yawning as a warning of the rise in cortisol levels: Randomized trial

    Get PDF
    Background: Yawning consistently poses a conundrum to the medical profession and neuroscientists. Despite neurological evidence such as parakinesia brachialis oscitans in stroke patients and thermo-irregulation in multiple sclerosis patients, there is considerable debate over the reasons for yawning with the mechanisms and hormonal pathways still not fully understood. Cortisol is implicated during yawning and may link many neurological disorders. Evidence was found in support of the Thompson cortisol hypothesis that proposes cortisol levels are elevated during yawning just as they tend to rise during stress and fatigue. Objectives: To investigate whether saliva cortisol levels rise during yawning and, therefore, support the Thompson cortisol hypothesis. Methods: We exposed 20 male and female volunteers aged between 18 and 53 years to conditions that provoked a yawning response in a randomized controlled trial. Saliva samples were collected at the start and again after the yawning response, or at the end of the stimuli presentations if the participant did not yawn. In addition, we collected electromyographic data of the jaw muscles to determine rest and yawning phases of neural activity. Yawning susceptibility scale, Hospital Anxiety and Depression Scale, General Health Questionnaire, and demographic and health details were also collected from each participant. A comprehensive data set allowed comparison between yawners and nonyawners, as well as between rest and yawning phases. Collecting electromyographic data from the yawning phase is novel, and we hope this will provide new information about neuromuscular activity related to cortisol levels. Exclusion criteria included chronic fatigue, diabetes, fibromyalgia, heart conditions, high blood pressure, hormone replacement therapy, multiple sclerosis, and stroke. We compared data between and within participants. Results: In the yawning group, there was a significant difference between saliva cortisol samples (t = -3.071, P = .01). Power and effect size were computed based on repeated-measures t tests for both the yawning and nonyawning groups. There was a medium effect size for the nonyawners group (r = .467) but low power (36%). Results were similar for the yawners group: medium effect size (r = .440) and low power (33%). Conclusions: There was significant evidence in support of the Thompson cortisol hypothesis that suggests cortisol levels are elevated during yawning. A further longitudinal study is planned to test neurological patients. We intend to devise a diagnostic tool based on changes in cortisol levels that may assist in the early diagnosis of neurological disorders based on the data collected. Trial Registration: International Standard Randomized Controlled Trial Number (ISRCTN): 61942768; http://www.controlled-trials.com/ISRCTN61942768/61942768 (Archived by WebCite at http://www.webcitation.org/6A75ZNYvr)

    In Bonobos Yawn Contagion Is Higher among Kin and Friends

    Get PDF
    In humans, the distribution of yawn contagion is shaped by social closeness with strongly bonded pairs showing higher levels of contagion than weakly bonded pairs. This ethological finding led the authors to hypothesize that the phenomenon of yawn contagion may be the result of certain empathic abilities, although in their most basal form. Here, for the first time, we show the capacity of bonobos (Pan paniscus) to respond to yawns of conspecifics. Bonobos spontaneously yawned more frequently during resting/relaxing compared to social tension periods. The results show that yawn contagion was context independent suggesting that the probability of yawning after observing others\u27 yawns is not affected by the propensity to engage in spontaneous yawns. As it occurs in humans, in bonobos the yawing response mostly occurred within the first minute after the perception of the stimulus. Finally, via a Linear Mixed Model we tested the effect of different variables (e.g., sex, rank, relationship quality) on yawn contagion, which increased when subjects were strongly bonded and when the triggering subject was a female. The importance of social bonding in shaping yawn contagion in bonobos, as it occurs in humans, is consistent with the hypothesis that empathy may play a role in the modulation of this phenomenon in both species. The higher frequency of yawn contagion in presence of a female as a triggering subject supports the hypothesis that adult females not only represent the relational and decisional nucleus of the bonobo society, but also that they play a key role in affecting the emotional states of others

    Investigating determinants of yawning in the domestic (Equus caballus) and Przewalski (Equus ferus przewalskii) horses

    Get PDF
    International audienceYawning is rare in herbivores which therefore may be an interesting group to disentangle the potential function(s) of yawning behaviour. Horses provide the opportunity to compare not only animals living in different conditions but also wild versus domestic species. Here, we tested three hypotheses by observing both domestic and Przewalski horses living in semi-natural conditions: (i) that domestic horses may show an elevated rate of yawning as a result of the domestication process (or as a result of life conditions), (ii) that individuals experiencing a higher level of social stress would yawn more than individuals with lower social stress and (iii) that males would yawn more often than females. The study involved 19 Przewalski horses (PHs) and 16 domestic horses (DHs) of different breeds living in large outdoor enclosures. The results showed that there was no difference between the PH and DH in yawning frequency (YF). PHs exhibited much higher levels of social interactions than DHs. There was a positive correlation between yawning frequency and aggressive behaviours in PHs, especially males, supporting the idea that yawning may be associated with more excitatory/stressful social situations. A correlation was found between yawning frequency and affiliative behaviours in DHs, which supports the potential relationship between yawning and social context. Finally, the entire males, but not castrated males, showed much higher levels of yawning than females in both species. The intensity (rather than the valence) of the interaction may be important in triggering yawning, which could therefore be a displacement activity that helps reduce tension

    Parakinesia Brachialis Oscitans: A Case Report

    No full text
    corecore