7,803 research outputs found
Using visualization for visualization : an ecological interface design approach to inputting data
Visualization is experiencing growing use by a diverse community, with continuing improvements in the availability and usability of systems. In spite of these developments the problem of how first to get the data in has received scant attention: the established approach of pre-defined readers and programming aids has changed little in the last two decades. This paper proposes a novel way of inputting data for scientific visualization that employs rapid interaction and visual feedback in order to understand how the data is stored. The approach draws on ideas from the discipline of ecological interface design to extract and control important parameters describing the data, at the same time harnessing our innate human ability to recognize patterns. Crucially, the emphasis is on file format discovery rather than file format description, so the method can therefore still work when nothing is known initially of how the file was originally written, as is often the case with legacy binary data. © 2013 Elsevier Ltd
Comparison with excavated and metal-detected finds in the wider region
When Roman objects are discovered in rivers they are commonly interpreted as accidental losses or as rubbish deposits revealed by fluvial erosion; this is in contrast to prehistoric assemblages, which are often seen as ritual offerings
Concave Switching in Single and Multihop Networks
Switched queueing networks model wireless networks, input queued switches and
numerous other networked communications systems. For single-hop networks, we
consider a {()-switch policy} which combines the MaxWeight policies
with bandwidth sharing networks -- a further well studied model of Internet
congestion. We prove the maximum stability property for this class of
randomized policies. Thus these policies have the same first order behavior as
the MaxWeight policies. However, for multihop networks some of these
generalized polices address a number of critical weakness of the
MaxWeight/BackPressure policies.
For multihop networks with fixed routing, we consider the Proportional
Scheduler (or (1,log)-policy). In this setting, the BackPressure policy is
maximum stable, but must maintain a queue for every route-destination, which
typically grows rapidly with a network's size. However, this proportionally
fair policy only needs to maintain a queue for each outgoing link, which is
typically bounded in number. As is common with Internet routing, by maintaining
per-link queueing each node only needs to know the next hop for each packet and
not its entire route. Further, in contrast to BackPressure, the Proportional
Scheduler does not compare downstream queue lengths to determine weights, only
local link information is required. This leads to greater potential for
decomposed implementations of the policy. Through a reduction argument and an
entropy argument, we demonstrate that, whilst maintaining substantially less
queueing overhead, the Proportional Scheduler achieves maximum throughput
stability.Comment: 28 page
EPR and Structural Characterization of Water-Soluble Mn2+-Doped Si Nanoparticles.
Water-soluble poly(allylamine) Mn2+-doped Si (SiMn) nanoparticles (NPs) were prepared and show promise for biologically related applications. The nanoparticles show both strong photoluminescence and good magnetic resonance contrast imaging. The morphology and average diameter were obtained through transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM); spherical crystalline Si NPs with an average diameter of 4.2 ± 0.7 nm were observed. The doping maximum obtained through this process was an average concentration of 0.4 ± 0.3% Mn per mole of Si. The water-soluble SiMn NPs showed a strong photoluminescence with a quantum yield up to 13%. The SiMn NPs had significant T1 contrast with an r1 relaxivity of 11.1 ± 1.5 mM-1 s-1 and r2 relaxivity of 32.7 ± 4.7 mM-1 s-1 where the concentration is in mM of Mn2+. Dextran-coated poly(allylamine) SiMn NPs produced NPs with T1 and T2 contrast with a r1 relaxivity of 27.1 ± 2.8 mM-1 s-1 and r2 relaxivity of 1078.5 ± 1.9 mM-1 s-1. X-band electron paramagnetic resonance spectra are fit with a two-site model demonstrating that there are two types of Mn2+ in these NP's. The fits yield hyperfine splittings (A) of 265 and 238 MHz with significant zero field splitting (D and E terms). This is consistent with Mn in sites of symmetry lower than tetrahedral due to the small size of the NP's
The digital data processing concepts of the LOFT mission
The Large Observatory for X-ray Timing (LOFT) is one of the five mission
candidates that were considered by ESA for an M3 mission (with a launch
opportunity in 2022 - 2024). LOFT features two instruments: the Large Area
Detector (LAD) and the Wide Field Monitor (WFM). The LAD is a 10 m 2 -class
instrument with approximately 15 times the collecting area of the largest
timing mission so far (RXTE) for the first time combined with CCD-class
spectral resolution. The WFM will continuously monitor the sky and recognise
changes in source states, detect transient and bursting phenomena and will
allow the mission to respond to this. Observing the brightest X-ray sources
with the effective area of the LAD leads to enormous data rates that need to be
processed on several levels, filtered and compressed in real-time already on
board. The WFM data processing on the other hand puts rather low constraints on
the data rate but requires algorithms to find the photon interaction location
on the detector and then to deconvolve the detector image in order to obtain
the sky coordinates of observed transient sources. In the following, we want to
give an overview of the data handling concepts that were developed during the
study phase.Comment: Proc. SPIE 9144, Space Telescopes and Instrumentation 2014:
Ultraviolet to Gamma Ray, 91446
A new, clean catalogue of extragalactic non-nuclear X-ray sources in nearby galaxies
We have created a new, clean catalogue of extragalactic non-nuclear X-ray sources by correlating the 3XMM-DR4 data release of the XMM-Newton Serendipitous Source Catalogue with the Third Reference Catalogue of Bright Galaxies and the Catalogue of Neighbouring Galaxies, using an improved version of the method presented in Walton et al. Our catalogue contains 1314 sources, of which 384 are candidate ultraluminous X-ray sources (ULXs). The resulting catalogue improves upon previous catalogues in its handling of spurious detections by taking into account XMM-Newton quality flags. We estimate the contamination of ULXs by background sources to be 24 per cent. We define a 'complete' subsample as those ULXs in galaxies for which the sensitivity limit is below 10 39 erg s -1 and use it to examine the hardness ratio properties between ULX and non-ULX sources, and ULXs in different classes of host galaxy. We find that ULXs have a similar hardness ratio distribution to lower luminosity sources, consistent with previous studies. We also find that ULXs in spiral and elliptical host galaxies have similar distributions to each other independent of host galaxy morphology, however, our results do support previous indications that the population of ULXs is more luminous in star-forming host galaxies than in non-star-forming galaxies. Our catalogue contains further interesting subpopulations for future study, including Eddington Threshold sources and highly variable ULXs. We also examine the highest luminosity (L X > 5 × 10 40 erg s -1) ULXs in our catalogue in search of intermediate-mass black hole candidates, and find nine new possible candidates.We gratefully acknowledge support from the Science and Technology Facilities Council (HPE through grant ST/K501979/1, TPR through ST/P000541/1). HPE acknowledges support under National Aeronautics and Space Administration contract NNG08FD60C. MJM and DJW acknowledge support from STFC Ernest Rutherford fellowships. SM acknowledges financial support by the Spanish Ministry of Economy and Competitiveness through grant AYA2016-76730-P (MINECO/FEDER)
Recommended from our members
Measuring Venous Oxygen Saturation Using the Photoplethysmograph Waveform
The pulse oximeter is now a standard-of-care monitor. In its most basic form it measures the arterial oxygenation saturation. It accomplishes this through the use of the photoplethysmograph waveform (PPG) at two or more wavelengths. Advances in digital signal processing are allowing for a re-examination of these waveforms. It has been recognized for some time that the movement of venous blood can be detected (1, 2) using the PPG. For the most part, this phenomenon has been seen as a source of artifact which interferes with calculation of arterial saturation. On the other hand, if venous saturation can be reliably measured, interesting new possibilities are opened. We hypothesize that the PPG waveform, obtained non-invasively by modern pulse oximeters, can be analyzed via digital signal processing to infer the venous oxygen saturation
- …